scholarly journals Complex Gene Regulation Underlying Mineral Nutrient Homeostasis in Soybean Root Response to Acidity Stress

Genes ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 402
Author(s):  
Qianqian Chen ◽  
Weiwei Wu ◽  
Tong Zhao ◽  
Wenqi Tan ◽  
Jiang Tian ◽  
...  

Proton toxicity is one of the major environmental stresses limiting crop production and becomes increasingly serious because of anthropogenic activities. To understand acid tolerance mechanisms, the plant growth, mineral nutrients accumulation, and global transcriptome changes in soybean (Glycine max) in response to long-term acidity stress were investigated. Results showed that acidity stress significantly inhibited soybean root growth but exhibited slight effects on the shoot growth. Moreover, concentrations of essential mineral nutrients were significantly affected by acidity stress, mainly differing among soybean organs and mineral nutrient types. Concentrations of phosphorus (P) and molybdenum (Mo) in both leaves and roots, nitrogen (N), and potassium (K) in roots and magnesium (Mg) in leaves were significantly decreased by acidity stress, respectively. Whereas, concentrations of calcium (Ca), sulfate (S), and iron (Fe) were increased in both leaves and roots. Transcriptome analyses in soybean roots resulted in identification of 419 up-regulated and 555 down-regulated genes under acid conditions. A total of 38 differentially expressed genes (DEGs) were involved in mineral nutrients transportation. Among them, all the detected five GmPTs, four GmZIPs, two GmAMTs, and GmKUPs, together with GmIRT1, GmNramp5, GmVIT2.1, GmSKOR, GmTPK5, and GmHKT1, were significantly down-regulated by acidity stress. Moreover, the transcription of genes encoding transcription factors (e.g., GmSTOP2s) and associated with pH stat metabolic pathways was significantly up-regulated by acidity stress. Taken together, it strongly suggests that maintaining pH stat and mineral nutrient homeostasis are adaptive strategies of soybean responses to acidity stress, which might be regulated by a complex signaling network.

2021 ◽  
pp. 1-4
Author(s):  
Lauren L. Allen ◽  
Nicholas C.K. Heng ◽  
Geoffrey R. Tompkins

Genes encoding the subunits of the membrane-bound F<sub>1</sub>F<sub>0</sub>-ATPase (responsible for exporting protons from the cytoplasm and contributing to acid tolerance) were sequenced for 24 non-mutans streptococci isolated from carious lesions. Isolates, mostly <i>Streptococcus salivarius</i>, displayed a continuum of acid tolerance thresholds ranging from pH 4.55 to 3.39, but amino acid alignments of F<sub>1</sub>F<sub>0</sub>-ATPase subunits revealed few non-synonymous substitutions and these were unrelated to acid tolerance. Thus, the F<sub>1</sub>F<sub>0</sub>-ATPase is highly-conserved among <i>S. salivarius</i> isolates despite varying acid tolerance thresholds, supporting the contention that acid tolerance is determined by the level of gene/protein expression rather than variation in molecular structure.


2019 ◽  
Vol 99 (2) ◽  
pp. 199-209 ◽  
Author(s):  
Marija Saric-Krsmanovic ◽  
Dragana Bozic ◽  
Ljiljana Radivojevic ◽  
Jelena Gajic Umiljendic ◽  
Sava Vrbnicanin

The physiological and anatomical impact of field dodder (Cuscuta campestris Yunck.) on alfalfa and sugar beet was examined under controlled conditions. The following parameters were checked: physiological — content of pigments (chlorophyll a, chlorophyll b, and carotenoids) and mineral nutrients: nitrogen, phosphorus, potassium, and percent of organic and mineral nutrients; and anatomical — thickness of the epidermis and cortex, diameter of the stem and central cylinder of alfalfa plants, diameter of tracheids and phloem cells, area of xylem and phloem, and hydraulic conductance of petiole bundles in petiole vascular bundles of sugar beet plants. Leaf parameters were also measured on both host plants: thickness of upper and underside leaf epidermis, thickness of palisade, spongy and mesophyll tissue, and diameter of vascular bundle cells. Pigments content and anatomical parameters were measured 7, 14, 21, 28, 35, and 42 d after infestation (DAI), while mineral nutrient contents were determined 20 and 40 DAI. Field dodder caused a significant reduction in pigments content in infested alfalfa (15%–68%) and sugar beet plants (1%–54%). The results obtained in this study confirmed that this parasitic flowering plant has a strong effect on most anatomical parameters of the stem and leaf of alfalfa and leaf and petiole of sugar beet. Also, it was revealed that field dodder increased the contents of N, P2O5, K2O, and organic nutrients in infested alfalfa plants, while infested sugar beet plants had higher contents of N and organic nutrients compared with non-infested plants.


2021 ◽  
pp. bs202103
Author(s):  
Yachana Jha

Applications of synthetic chemical fertilizers and pesticides lead to several environmental hazards, causing damages to entire ecosystem. To reduce damage caused by such chemical inputs in agriculture and environment required a serious attention for replacement of chemicals input with eco-friendly options. In this study decaying macrophytes were selected as an option for organic agriculture, by analyzing its ability to provide important mineral nutrient to the maize crop grown in low nutrient soil as well as for providing resistant towards many common phyto-pathogens to enhance yield. The results of the study showed that decaying macrophytes have high concentration of stored important mineral nutrient in their body mass, which get released in the soil during its decay and to be used by the maize plant. The decaying macrophytes leaf extract have considerable amount of phenolic and flavonoids also having antimicrobial activity. The antimicrobial activity of the leaf extract has been analyzed against the common phyto-pathogen Pseudomonas aeruginosa , and S. aureus by agar disc method and the formation of clear zone indicate its potential as bio-control agent. So under intensive agricultural practices, application of such biological waste is of particular importance for enhancing soil fertility without chemical input, to ensure sustainable agriculture.


2020 ◽  
Vol 12 (13) ◽  
pp. 5446 ◽  
Author(s):  
Pankaj Bhatt ◽  
Amit Verma ◽  
Shulbhi Verma ◽  
Md. Shahbaz Anwar ◽  
Parteek Prasher ◽  
...  

Recent crop production studies have aimed at an increase in the biotic and abiotic tolerance of plant communities, along with increased nutrient availability and crop yields. This can be achieved in various ways, but one of the emerging approaches is to understand the phytomicrobiome structure and associated chemical communications. The phytomicrobiome was characterized with the advent of high-throughput techniques. Its composition and chemical signaling phenomena have been revealed, leading the way for “rhizosphere engineering”. In addition to the above, phytomicrobiome studies have paved the way to best tackling soil contamination with various anthropogenic activities. Agricultural lands have been found to be unbalanced for crop production. Due to the intense application of agricultural chemicals such as herbicides, fungicides, insecticides, fertilizers, etc., which can only be rejuvenated efficiently through detailed studies on the phytomicrobiome component, the phytomicrobiome has recently emerged as a primary plant trait that affects crop production. The phytomicrobiome also acts as an essential modifying factor in plant root exudation and vice versa, resulting in better plant health and crop yield both in terms of quantity and quality. Not only supporting better plant growth, phytomicrobiome members are involved in the degradation of toxic materials, alleviating the stress conditions that adversely affect plant development. Thus, the present review compiles the progress in understanding phytomicrobiome relationships and their application in achieving the goal of sustainable agriculture.


AoB Plants ◽  
2019 ◽  
Vol 11 (6) ◽  
Author(s):  
Josep Ramoneda ◽  
Johannes Le Roux ◽  
Emmanuel Frossard ◽  
Cecilia Bester ◽  
Noel Oettlé ◽  
...  

Abstract Mutualistic plant–microbial functioning relies on co-adapted symbiotic partners as well as conducive environmental conditions. Choosing particular plant genotypes for domestication and subsequent cultivar selection can narrow the gene pools of crop plants to a degree that they are no longer able to benefit from microbial mutualists. Elevated mineral nutrient levels in cultivated soils also reduce the dependence of crops on nutritional support by mutualists such as mycorrhizal fungi and rhizobia. Thus, current ways of crop production are predestined to compromise the propagation and function of microbial symbionts, limiting their long-term benefits for plant yield stability. The influence of mutualists on non-native plant establishment and spread, i.e. biological invasions, provides an unexplored analogue to contemporary crop production that accounts for mutualistic services from symbionts like rhizobia and mycorrhizae. The historical exposure of organisms to biotic interactions over evolutionary timescales, or so-called eco-evolutionary experience (EEE), has been used to explain the success of such invasions. In this paper, we stress that consideration of the EEE concept can shed light on how to overcome the loss of microbial mutualist functions following crop domestication and breeding. We propose specific experimental approaches to utilize the wild ancestors of crops to determine whether crop domestication compromised the benefits derived from root microbial symbioses or not. This can predict the potential for success of mutualistic symbiosis manipulation in modern crops and the maintenance of effective microbial mutualisms over the long term.


2004 ◽  
Vol 70 (9) ◽  
pp. 5315-5322 ◽  
Author(s):  
M. Andrea Azcarate-Peril ◽  
Eric Altermann ◽  
Rebecca L. Hoover-Fitzula ◽  
Raul J. Cano ◽  
Todd R. Klaenhammer

ABSTRACT Amino acid decarboxylation-antiporter reactions are one of the most important systems for maintaining intracellular pH between physiological limits under acid stress. We analyzed the Lactobacillus acidophilus NCFM complete genome sequence and selected four open reading frames with similarities to genes involved with decarboxylation reactions involved in acid tolerance in several microorganisms. Putative genes encoding an ornithine decarboxylase, an amino acid permease, a glutamate γ-aminobutyrate antiporter, and a transcriptional regulator were disrupted by insertional inactivation. The ability of L. acidophilus to survive low-pH conditions, such as those encountered in the stomach or fermented dairy foods, was investigated and compared to the abilities of early- and late-stationary-phase cells of the mutants by challenging them with a variety of acidic conditions. All of the integrants were more sensitive to low pH than the parental strain. Interestingly, each integrant also exhibited an adaptive acid response during logarithmic growth, indicating that multiple mechanisms are present and orchestrated in L. acidophilus in response to acid challenge.


1995 ◽  
Vol 5 (2) ◽  
pp. 121-125 ◽  
Author(s):  
John N.A. Lott ◽  
M. Marcia West ◽  
Ben Clark ◽  
Penny Beecroft

AbstractThe endosperm and cotyledon tissues of Ricinus communis seeds and young seedlings were examined for changes in the mineral nutrient composition of globoids during early seedling growth. The effect on globoid composition of providing mineral nutrients to the developing seedling was also investigated. Globoids in endosperm and cotyledon tissues of castor bean seeds contained P, Mg and K, as well as trace amounts of Ca, Fe and Zn. Irrespective of the addition of mineral nutrients, K content in globoids of endosperm and cotyledon tissues declined significantly during initial seedling growth. During early seedling growth, amounts of Fe, Zn and Ca increased in cotyledon globoids. Ca contents of globoids of endosperm tissues also increased. The changes in Fe, Zn and Ca globoid contents were not influenced by providing mineral nutrients to growing castor bean seedlings.


2018 ◽  
Vol 2018 ◽  
pp. 1-6
Author(s):  
Lord Abbey ◽  
Nana Annan ◽  
Samuel Kwaku Asiedu ◽  
Ebenezer Oluwaseun Esan ◽  
Ekene Mark-Anthony Iheshiulo

Growing medium amino acids and mineral nutrients stimulate rhizosphere activities and plant growth. A greenhouse experiment was performed to compare amino acid and mineral nutrient profiles of seafood waste compost (SFWC) and municipal solid waste compost (MSWC) and vermicompost (VC). Their efficacies were also tested on onion (Allium cepa L. “Sweet Utah”). The control was Promix-BX™ alone. The MSWC, SFWC, and VC were composed of total of 36.4, 48.3, and 67.5 mg amino acids/100 g dry weight, respectively. Glutamic acid, aspartic acid, and glycine were the highest while methionine, histamine, and cysteine were the least in all the amendments. The VC had the highest Ca content but the least P and K contents. SFWC had the highest content of P and K and most of the determined micronutrients. The MSWC had significantly (P<0.05) the highest N and leaf chlorophyll contents followed by the VC. The MSWC significantly (P<0.05) increased anthocyanin content while the control recorded the least. The maximum quantum yield of photosystem II (Fv/Fm) and the potential photosynthetic capacity (Fv/Fo) were least in the VC treated plants. Dry matter was not affected by the type of amendment. Overall, plant growth was improved by the MSWC. Future research should investigate effect on secondary metabolites.


Sign in / Sign up

Export Citation Format

Share Document