scholarly journals Harnessing DNA Replication Stress for Novel Cancer Therapy

Genes ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 990 ◽  
Author(s):  
Huanbo Zhu ◽  
Umang Swami ◽  
Ranjan Preet ◽  
Jun Zhang

DNA replication is the fundamental process for accurate duplication and transfer of genetic information. Its fidelity is under constant stress from endogenous and exogenous factors which can cause perturbations that lead to DNA damage and defective replication. This can compromise genomic stability and integrity. Genomic instability is considered as one of the hallmarks of cancer. In normal cells, various checkpoints could either activate DNA repair or induce cell death/senescence. Cancer cells on the other hand potentiate DNA replicative stress, due to defective DNA damage repair mechanism and unchecked growth signaling. Though replicative stress can lead to mutagenesis and tumorigenesis, it can be harnessed paradoxically for cancer treatment. Herein, we review the mechanism and rationale to exploit replication stress for cancer therapy. We discuss both established and new approaches targeting DNA replication stress including chemotherapy, radiation, and small molecule inhibitors targeting pathways including ATR, Chk1, PARP, WEE1, MELK, NAE, TLK etc. Finally, we review combination treatments, biomarkers, and we suggest potential novel methods to target DNA replication stress to treat cancer.

Genes ◽  
2016 ◽  
Vol 7 (8) ◽  
pp. 51 ◽  
Author(s):  
Jun Zhang ◽  
Qun Dai ◽  
Dongkyoo Park ◽  
Xingming Deng

Cancers ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1289 ◽  
Author(s):  
Xing Bian ◽  
Wenchu Lin

Small cell lung cancer (SCLC), accounting for about 15% of all cases of lung cancer worldwide, is the most lethal form of lung cancer. Despite an initially high response rate of SCLC to standard treatment, almost all patients are invariably relapsed within one year. Effective therapeutic strategies are urgently needed to improve clinical outcomes. Replication stress is a hallmark of SCLC due to several intrinsic factors. As a consequence, constitutive activation of the replication stress response (RSR) pathway and DNA damage repair system is involved in counteracting this genotoxic stress. Therefore, therapeutic targeting of such RSR and DNA damage repair pathways will be likely to kill SCLC cells preferentially and may be exploited in improving chemotherapeutic efficiency through interfering with DNA replication to exert their functions. Here, we summarize potentially valuable targets involved in the RSR and DNA damage repair pathways, rationales for targeting them in SCLC treatment and ongoing clinical trials, as well as possible predictive biomarkers for patient selection in the management of SCLC.


Genes ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 730
Author(s):  
Clara Forrer Charlier ◽  
Rodrigo A. P. Martins

The precise replication of DNA and the successful segregation of chromosomes are essential for the faithful transmission of genetic information during the cell cycle. Alterations in the dynamics of genome replication, also referred to as DNA replication stress, may lead to DNA damage and, consequently, mutations and chromosomal rearrangements. Extensive research has revealed that DNA replication stress drives genome instability during tumorigenesis. Over decades, genetic studies of inherited syndromes have established a connection between the mutations in genes required for proper DNA repair/DNA damage responses and neurological diseases. It is becoming clear that both the prevention and the responses to replication stress are particularly important for nervous system development and function. The accurate regulation of cell proliferation is key for the expansion of progenitor pools during central nervous system (CNS) development, adult neurogenesis, and regeneration. Moreover, DNA replication stress in glial cells regulates CNS tumorigenesis and plays a role in neurodegenerative diseases such as ataxia telangiectasia (A-T). Here, we review how replication stress generation and replication stress response (RSR) contribute to the CNS development, homeostasis, and disease. Both cell-autonomous mechanisms, as well as the evidence of RSR-mediated alterations of the cellular microenvironment in the nervous system, were discussed.


2020 ◽  
Vol 48 (22) ◽  
pp. 12711-12726
Author(s):  
Yuanliang Yan ◽  
Zhijie Xu ◽  
Jinzhou Huang ◽  
Guijie Guo ◽  
Ming Gao ◽  
...  

Abstract PrimPol has been recently identified as a DNA damage tolerant polymerase that plays an important role in replication stress response. However, the regulatory mechanisms of PrimPol are not well defined. In this study, we identify that the deubiquitinase USP36 interferes with degradation of PrimPol to regulate the replication stress response. Mechanistically, USP36 is deubiquitinated following DNA replication stress, which in turn facilitates its upregulation and interaction with PrimPol. USP36 deubiquitinates K29-linked polyubiquitination of PrimPol and increases its protein stability. Depletion of USP36 results in replication stress-related defects and elevates cell sensitivity to DNA-damage agents, such as cisplatin and olaparib. Moreover, USP36 expression positively correlates with the level of PrimPol protein and poor prognosis in patient samples. These findings indicate that the regulation of PrimPol K29-linked ubiquitination by USP36 plays a critical role in DNA replication stress and chemotherapy response.


2013 ◽  
Vol 33 (6) ◽  
pp. 1210-1222 ◽  
Author(s):  
Mayank Singh ◽  
Clayton R. Hunt ◽  
Raj K. Pandita ◽  
Rakesh Kumar ◽  
Chin-Rang Yang ◽  
...  

The humanLMNAgene encodes the essential nuclear envelope proteins lamin A and C (lamin A/C). Mutations inLMNAresult in altered nuclear morphology, but how this impacts the mechanisms that maintain genomic stability is unclear. Here, we report that lamin A/C-deficient cells have a normal response to ionizing radiation but are sensitive to agents that cause interstrand cross-links (ICLs) or replication stress. In response to treatment with ICL agents (cisplatin, camptothecin, and mitomycin), lamin A/C-deficient cells displayed normal γ-H2AX focus formation but a higher frequency of cells with delayed γ-H2AX removal, decreased recruitment of the FANCD2 repair factor, and a higher frequency of chromosome aberrations. Similarly, following hydroxyurea-induced replication stress, lamin A/C-deficient cells had an increased frequency of cells with delayed disappearance of γ-H2AX foci and defective repair factor recruitment (Mre11, CtIP, Rad51, RPA, and FANCD2). Replicative stress also resulted in a higher frequency of chromosomal aberrations as well as defective replication restart. Taken together, the data can be interpreted to suggest that lamin A/C has a role in the restart of stalled replication forks, a prerequisite for initiation of DNA damage repair by the homologous recombination pathway, which is intact in lamin A/C-deficient cells. We propose that lamin A/C is required for maintaining genomic stability following replication fork stalling, induced by either ICL damage or replicative stress, in order to facilitate fork regression prior to DNA damage repair.


2018 ◽  
Author(s):  
Guo Chen ◽  
Andrew Magis ◽  
Ke Xu ◽  
Dongkyoo Park ◽  
David Yu ◽  
...  

2009 ◽  
Vol 20 (3) ◽  
pp. 983-994 ◽  
Author(s):  
Xia Yi ◽  
Hilda I. de Vries ◽  
Katarzyna Siudeja ◽  
Anil Rana ◽  
Willy Lemstra ◽  
...  

Hydroxyurea, a well-known DNA replication inhibitor, induces cell cycle arrest and intact checkpoint functions are required to survive DNA replication stress induced by this genotoxic agent. Perturbed DNA synthesis also results in elevated levels of DNA damage. It is unclear how organisms prevent accumulation of this type of DNA damage that coincides with hampered DNA synthesis. Here, we report the identification of stonewall (stwl) as a novel hydroxyurea-hypersensitive mutant. We demonstrate that Stwl is required to prevent accumulation of DNA damage induced by hydroxyurea; yet, Stwl is not involved in S/M checkpoint regulation. We show that Stwl is a heterochromatin-associated protein with transcription-repressing capacities. In stwl mutants, levels of trimethylated H3K27 and H3K9 (two hallmarks of silent chromatin) are decreased. Our data provide evidence for a Stwl-dependent epigenetic mechanism that is involved in the maintenance of the normal balance between euchromatin and heterochromatin and that is required to prevent accumulation of DNA damage in the presence of DNA replication stress.


2012 ◽  
Vol 14 (9) ◽  
pp. 966-976 ◽  
Author(s):  
Johnny M. Tkach ◽  
Askar Yimit ◽  
Anna Y. Lee ◽  
Michael Riffle ◽  
Michael Costanzo ◽  
...  

2017 ◽  
Author(s):  
Naomi Coulton ◽  
Thomas Caspari

AbstractWhy the DNA damage checkpoint kinase Chk1 protects the genome of lower and higher eukaryotic cells differentially is still unclear. Mammalian Chk1 regulates replication origins, safeguards DNA replication forks and promotes fork progression. Conversely, yeast Chk1 acts only in G1 and G2. We report here that the mutation of serine 173 (S173A) in the activation loop of fission yeast Chk1 abolishes the G1-M and S-M checkpoints without affecting the G2-M arrest. Although Chk1-S173A is fully phosphorylated at serine 345 by the DNA damage sensor Rad3 (ATR) when DNA replication forks break, cells fail to stop the cell cycle. Mutant cells are uniquely sensitive to the DNA alkylation agent methyl- methanesulfate (MMS). This MMS sensitivity is genetically linked with the lagging strand DNA polymerase delta. Chk1-S173A is also unable to block mitosis when the G1 transcription factor Cdc10 is impaired. Serine 173 is equivalent to lysine 166 in human Chk1, an amino acid important for substrate specificity. We conclude that the removal of serine 173 impairs the phosphorylation of a Chk1 target that is important to protect cells from DNA replication stress.Summary statementMutation of serine-173 in the activation loop of Chk1 kinase may promote cancer as it abolishes the response to genetic alterations that arise while chromosomes are being copied.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3114-3114
Author(s):  
Francesca Cottini ◽  
Teru Hideshima ◽  
Giovanni Tonon ◽  
Kenneth C. Anderson

Abstract Multiple myeloma (MM) is a clonal proliferation of malignant plasma cells, carrying abnormal karyotypes, chromosomal translocations, and innumerous DNA copy-number variations. We and others have previously shown that MM cells have constitutive DNA damage and DNA damage response (DDR), while normal plasma cells (NPCs) are negative for these DDR markers. Moreover, we recently observed that markers of replicative stress, such as p-ATR and p-CHK1 together with RPA foci, are also present in MM cells. The MYC (or c-MYC) oncogene is pervasively altered in MM. Since MYC is associated with DNA replication stress, oxidative stress, and DDR, we explored whether MYC is implicated in these pathways in MM. Indeed, by analyzing various DNA damage gene expression signatures, we found a positive correlation between MYC levels and ongoing DNA damage. We next examined whether MYC modulation could alter replicative stress markers, and induce DNA double-strand breaks. In a gain-of-function model, c-MYC was expressed in U266 MM cell line, which has low c-MYC levels and importantly shows low levels of ongoing DNA damage. In parallel, the H929 and MM.1S MM cell lines were used to knock-down c-MYC expression. Re-expression of a functional MYC-EGFP in U266 cells induced replicative stress markers, such as RAD51, RPA, and phospho-CHK1 foci, as well as increased RAD51, RPA and phospho-CHK1 protein levels. To determine whether this phenotype was linked to concomitant oxidative stress, we incubated MM cells with an antioxidant reagent N-Acetylcysteine (NAC). We observed a modest reduction in replicative markers after NAC treatment, which was more evident by MYC overexpression. Taken together, these results suggest that the replicative stress induced by MYC is, at least in part, associated with oxidative stress. Additionally, MYC-EGFP positive U266 cells also show DNA damage, evidenced by appearance of phospho-H2A.X foci (which detect DNA double strand breaks), that in turn triggers an intense DNA damage response, assessed by phospho-ATM/phospho CHK2 positivity. In contrast, all these DDR markers were downregulated by MYC silencing, prior to cell death, in MM.1S and H929 MM cell lines. Finally, we examined whether targeting the replicative stress response may represent a novel therapeutic strategy in MM cells with high expression of MYC. Specifically, we treated U266 cells transduced with MYC or control LACZ cells, as well as MM.1S and H929 transfected with a specific MYC-shRNA or their scrambled shRNA controls, with a small molecule ATR inhibitor VE-821 which prevents proper DNA repair after DNA damage. Cells overexpressing MYC were significantly more sensitive to VE-821 treatment compared to controls; conversely MYC-silenced cells were more resistant to VE-821. These results suggest the potential utility of VE-821 as a novel therapeutic agent in cells with high expression of MYC. In conclusion, our data show that MYC may exert its oncogenic activity partly through its ability to trigger DNA replication stress, leading to DNA damage and genomic instability in MM cells. Given the pervasive deregulation of MYC present in MM cells, its role in DNA replication and DNA damage may correlate with the extensive genomic rearrangements observed in MM cells. Therefore, treatment strategies targeting this Achilles' heel may improve patient outcome in MM. Disclosures: Hideshima: Acetylon Pharmaceuticals: Consultancy. Anderson:Acetylon, Oncopep: Scientific Founder, Scientific Founder Other; Celgene, Millennium, BMS, Onyx: Membership on an entity's Board of Directors or advisory committees.


Sign in / Sign up

Export Citation Format

Share Document