scholarly journals The Influence of Competition Among C. elegans Small RNA Pathways on Development

Genes ◽  
2012 ◽  
Vol 3 (4) ◽  
pp. 671-685 ◽  
Author(s):  
Jimmy J. Zhuang ◽  
Craig P. Hunter

Small RNAs play a variety of regulatory roles, including highly conserved developmental functions. Caenorhabditis elegans not only possesses most known small RNA pathways, it is also an easy system to study their roles and interactions during development. It has been proposed that in C. elegans, some small RNA pathways compete for access to common limiting resources. The strongest evidence supporting this model is that disrupting the production or stability of endogenous short interfering RNAs (endo-siRNAs) enhances sensitivity to experimentally induced exogenous RNA interference (exo-RNAi). Here, we examine the relationship between the endo-siRNA and microRNA (miRNA) pathways, and find that, consistent with competition among these endogenous small RNA pathways, endo-siRNA pathway mutants may enhance miRNA efficacy. Furthermore, we show that exo-RNAi may also compete with both endo-siRNAs and miRNAs. Our data thus provide support that all known Dicer-dependent small RNA pathways may compete for limiting common resources. Finally, we observed that both endo-siRNA mutants and animals experiencing exo-RNAi have increased expression of miRNA-regulated stage-specific developmental genes. These observations suggest that perturbing the small RNA flux and/or the induction of exo-RNAi, even in wild-type animals, may impact development via effects on the endo-RNAi and microRNA pathways.

2017 ◽  
Vol 74 (8) ◽  
pp. 1173-1179 ◽  
Author(s):  
Joshua Coulter Russell ◽  
Nikolay Burnaevskiy ◽  
Bridget Ma ◽  
Miguel Arenas Mailig ◽  
Franklin Faust ◽  
...  

Abstract The function of the pharynx, an organ in the model system Caenorhabditis elegans, has been correlated with life span and motility (another measure of health) since 1980. In this study, in order to further understand the relationship between organ function and life span, we measured the age-related decline of the pharynx using an electrophysiological approach. We measured and analyzed electropharyngeograms (EPG) of wild type animals, short-lived hsf-1 mutants, and long-lived animals with genetically decreased insulin signaling or increased heat shock pathway signaling; we recorded a total of 2,478 EPGs from 1,374 individuals. As expected, the long-lived daf-2(e1370) and hsf-1OE(uthIs235) animals maintained pharynx function relatively closer to the youthful state during aging, whereas the hsf-1(sy441) and wild type animals’ pharynx function deviated significantly further from the youthful state at advanced age. Measures of the amount of variation in organ function can act as biomarkers of youthful physiology as well. Intriguingly, the long-lived animals had greater variation in the duration of pharynx contraction at older ages.


2020 ◽  
Author(s):  
Rajani Kanth Gudipati ◽  
Kathrin Braun ◽  
Foivos Gypas ◽  
Daniel Hess ◽  
Jan Schreier ◽  
...  

SummarySmall RNA pathways defend the germlines of animals against selfish genetic elements and help to maintain genomic integrity. At the same time, their activity needs to be well-controlled to prevent silencing of ‘self’ genes. Here, we reveal a proteolytic mechanism that controls endogenous small interfering (22G) RNA activity in the Caenorhabditis elegans germline to protect genome integrity and maintain fertility. We find that WAGO-1 and WAGO-3 Argonaute (Ago) proteins are matured through proteolytic processing of their unusually proline-rich N-termini. In the absence of DPF-3, a P-granule-localized N-terminal dipeptidase orthologous to mammalian DPP8/9, processing fails, causing a change of identity of 22G RNAs bound to these WAGO proteins. Desilencing of repeat- and transposon-derived transcripts, DNA damage and acute sterility ensue. These phenotypes are recapitulated when WAGO-1 and WAGO-3 are rendered resistant to DFP-3-mediated processing, identifying them as critical substrates of DPF-3. We conclude that N-terminal processing of Ago proteins regulates their activity and promotes discrimination of self from non-self by ensuring association with the proper complement of small RNAs.Graphical Abstract: The role of DPF-3 in the fertility of the animalsIn wild type animals, the WAGO-1 and WAGO-3 Argonaute proteins are produced as immature pro-proteins with N-termini (N) that are unusually rich in prolines (P). N-terminal processing by DPF-3 is required for loading of the proper small RNA cargo and stabilization of WAGO-3. Accordingly, loss of this processing activity causes desilencing of transposable elements (TE), cell death and sterility.


2019 ◽  
Author(s):  
Itamar Lev ◽  
Itai Antoine Toker ◽  
Yael Mor ◽  
Anat Nitzan ◽  
Guy Weintraub ◽  
...  

AbstractInC. elegansnematodes, components of liquid-like germ granules were shown to be required for transgenerational small RNA inheritance. Surprisingly, we show here that mutants with defective germ granules (pptr-1,meg-3/4,pgl-1) can nevertheless inherit potent small RNA-based silencing responses, but some of the mutants lose this ability after many generations of homozygosity. Animals mutated inpptr-1, which is required for stabilization of P granules in the early embryo, display extremely strong heritable RNAi responses, which last for tens of generations, long after the responses in wild type animals peter out. The phenotype of mutants defective in the core germ granules proteins MEG-3 and MEG-4, depends on the genotype of the ancestors: Mutants that derive from maternal lineages that had functional MEG-3 and MEG-4 proteins exhibit enhanced RNAi inheritance for multiple generations. While functional ancestralmeg-3/4alleles correct, and even potentiates the ability of mutant descendants to inherit RNAi, defects in germ granules functions can be memorized as well; Wild type descendants that derive from lineages of mutants show impaired RNAi inheritance for many (>16) generations, although their germ granules are intact. Importantly, while P granules are maternally deposited, wild type progeny derived frommeg-3/4male mutants also show reduced RNAi inheritance. Unlike germ granules, small RNAs are inherited also from the sperm. Moreover, we find that the transgenerational effects that depend on the ancestral germ granules require the argonaute protein HRDE-1, which carries heritable small RNAs in the germline. Indeed, small RNA sequencing reveals imbalanced levels of many endogenous small RNAs in germ granules mutants. Strikingly, we find thathrde-1;meg-3/4triple mutants inherit RNAi, althoughhrde-1was previously thought to be essential for heritable silencing. We propose that germ granules sort and shape the RNA pool, and that small RNA inheritance memorizes this activity for multiple generations.


2018 ◽  
Author(s):  
Miguel Vasconcelos Almeida ◽  
Sabrina Dietz ◽  
Stefan Redl ◽  
Emil Karaulanov ◽  
Andrea Hildebrandt ◽  
...  

AbstractIn every domain of life, Argonaute proteins and their associated small RNAs regulate gene expression. Despite great conservation of Argonaute proteins throughout evolution, many proteins acting in small RNA pathways are not widely conserved. Gametocyte-specific factor 1 (Gtsf1) proteins, characterized by two tandem CHHC zinc fingers and an unstructured, acidic C-terminal tail, are conserved in animals and act in small RNA pathways. In fly and mouse, they are required for fertility and have been shown to interact with Piwi clade Argonautes. We identified T06A10.3 as the Caenorhabditis elegans Gtsf1 homolog and named it gtsf-1. Given its conserved nature and roles in Piwi-mediated gene silencing, we sought out to characterize GTSF-1 in the context of the small RNA pathways of C. elegans. Like its homologs, GTSF-1 is required for normal fertility. Surprisingly, we report that GTSF-1 is not required for Piwi-mediated gene silencing. Instead, gtsf-1 mutants show strong depletion of a class of endogenous small RNAs, known as 26G-RNAs, and fully phenocopy mutants lacking RRF-3, the RNA-dependent RNA Polymerase that synthesizes 26G-RNAs. We show, both in vivo and in vitro, that GTSF-1 specifically and robustly interacts with RRF-3 via its tandem CHHC zinc fingers. Furthermore, we demonstrate that GTSF-1 is required for the assembly of a larger RRF-3 and DCR-1-containing complex, also known as ERIC, thereby allowing for 26G-RNA generation. We propose that GTSF-1 homologs may similarly act to drive the assembly of larger complexes that subsequently act in small RNA production and/or in imposing small RNA-mediated silencing activities.


2018 ◽  
Author(s):  
Miguel Vasconcelos Almeida ◽  
António Miguel de Jesus Domingues ◽  
Hanna Lukas ◽  
Maria Mendez-Lago ◽  
René F. Ketting

AbstractRNA interference was first described in the nematode Caenorhabditis elegans. Ever since, several new endogenous small RNA pathways have been described and characterized to different degrees. Much like plants, but unlike Drosophila and mammals, worms have RNA-dependent RNA Polymerases (RdRPs) that directly synthesize small RNAs using other transcripts as a template. The very prominent secondary small interfering RNAs, also called 22G-RNAs, produced by the RdRPs RRF-1 and EGO-1 in C. elegans, maintain the 5’ triphosphate group, stemming from RdRP activity, also after loading into an Argonaute protein. This creates a technical issue, since 5’PPP groups decrease cloning efficiency for small RNA sequencing. To increase cloning efficiency of these small RNA species, a common practice in the field is the treatment of RNA samples, prior to library preparation, with Tobacco Acid pyrophosphatase (TAP). Recently, TAP production and supply was discontinued, so an alternative must be devised. We turned to RNA 5’ pyrophosphohydrolase (RppH), a commercially available pyrophosphatase isolated from E. coli. Here we directly compare TAP and RppH in their use for small RNA library preparation. We show that RppH-treated samples faithfully recapitulate TAP-treated samples. Specifically, there is enrichment for 22G-RNAs and mapped small RNA reads show no small RNA transcriptome-wide differences between RppH and TAP treatment. We propose that RppH can be used as a small RNA pyrophosphatase to enrich for triphosphorylated small RNA species and show that RppH- and TAP-derived datasets can be used in direct comparison.


2018 ◽  
Author(s):  
Itamar Lev ◽  
Hila Gingold ◽  
Oded Rechavi

AbstractIn Caenorhabditis elegans, RNA interference (RNAi) responses can transmit across generations via small RNAs. RNAi inheritance is associated with Histone-3-Lysine-9 tri-methylation (H3K9me3) of the targeted genes. In other organisms, maintenance of silencing requires a feed-forward loop between H3K9me3 and small RNAs. Here we show that in C. elegans not only is H3K9me3 unnecessary for inheritance, the modification’s function depends on the identity of the RNAi-targeted gene. We found an asymmetry in the requirement for H3K9me3 and the main worm H3K9me3 methyltransferases, SET-25 and SET-32. Both methyltransferases promote heritable silencing of the foreign gene gfp, but are dispensable for silencing of the endogenous gene oma-1. Genome-wide examination of heritable endogenous small interfering RNAs (endo-siRNAs) revealed that the SET-25-dependent heritable endo-siRNAs target newly acquired and highly H3K9me3 marked genes. Thus, “repressive” chromatin marks could be important specifically for heritable silencing of genes which are flagged as “foreign”, such as gfp.


Author(s):  
Daniel A Chaves ◽  
Hui Dai ◽  
Lichao Li ◽  
James J Moresco ◽  
Myung Eun Oh ◽  
...  

SUMMARYEukaryotic cells regulate 5’ triphosphorylated (ppp-) RNAs to promote cellular functions and prevent recognition by antiviral RNA sensors. For example, RNA capping enzymes possess triphosphatase domains that remove the γ phosphates of ppp-RNAs during RNA capping. Members of the closely related PIR1 family of RNA polyphosphatases remove both the β and γ phosphates from ppp-RNAs. Here we show that C. elegans PIR-1 dephosphorylates ppp-RNAs made by cellular RdRPs and is required for the maturation of 26G-RNAs, Dicer-dependent small RNAs that regulate thousands of genes during spermatogenesis and embryogenesis. PIR-1 also regulates the CSR-1 22G-RNA pathway and has critical functions in both somatic and germline development. Our findings suggest that PIR-1 modulates both Dicer-dependent and - independent Argonaute pathways, and provide insight into how cells and viruses use a conserved RNA phosphatase to regulate and respond to ppp-RNA species.


2019 ◽  
Vol 53 (1) ◽  
pp. 289-311 ◽  
Author(s):  
Natasha E. Weiser ◽  
John K. Kim

In animals, small noncoding RNAs that are expressed in the germline and transmitted to progeny control gene expression to promote fertility. Germline-expressed small RNAs, including endogenous small interfering RNAs (endo-siRNAs) and Piwi-interacting RNAs (piRNAs), drive the repression of deleterious transcripts such as transposons, repetitive elements, and pseudogenes. Recent studies have highlighted an important role for small RNAs in transgenerational epigenetic inheritance via regulation of heritable chromatin marks; therefore, small RNAs are thought to convey an epigenetic memory of genomic self and nonself elements. Small RNA pathways are highly conserved in metazoans and have been best described for the model organism Caenorhabditis elegans. In this review, we describe the biogenesis, regulation, and function of C. elegans endo-siRNAs and piRNAs, along with recent insights into how these distinct pathways are integrated to collectively regulate germline gene expression, transgenerational epigenetic inheritance, and ultimately, animal fertility.


2019 ◽  
Author(s):  
John Paul T. Ouyang ◽  
Andrew Folkmann ◽  
Lauren Bernard ◽  
Chih-Yung Lee ◽  
Uri Seroussi ◽  
...  

SUMMARYP granules are perinuclear condensates in C. elegans germ cells proposed to serve as hubs for self/non-self RNA discrimination by Argonautes. We report that a mutant (meg-3 meg-4) that does not assemble P granules in primordial germ cells loses competence for RNA-interference over several generations and accumulates silencing small RNAs against hundreds of endogenous genes, including the RNA-interference genes rde-11 and sid-1. In wild-type, rde-11 and sid-1 transcripts are heavily targeted by piRNAs, accumulate in P granules, but maintain expression. In the primordial germ cells of meg-3 meg-4 mutants, rde-11 and sid-1 transcripts disperse in the cytoplasm with the small RNA biogenesis machinery, become hyper-targeted by secondary sRNAs, and are eventually silenced. Silencing requires the PIWI-class Argonaute PRG-1 and the nuclear Argonaute HRDE-1 that maintains trans-generational silencing of piRNA targets. These observations support a “safe harbor” model for P granules in protecting germline transcripts from piRNA-initiated silencing.


2015 ◽  
Author(s):  
Joshua Elkington

Small RNAs have been determined to have an essential role in gene regulation. However, competition between small RNAs is a poorly understood aspect of small RNA dynamics. Recent evidence has suggested that competition between small RNA pathways arises from a scarcity of common resources essential for small RNA activity. In order to understand how competition affects small RNAs in C. elegans, a system of differential equations was used. The model recreates normal behavior of small RNAs and uses random sampling in order to determine the coefficients of competition for each small RNA class. The model includes endogenous small-interfering RNAs (endo-siRNA), exogenous small-interfering RNAs (exo-siRNA), and microRNAs (miRNA). The model predicts that exo-siRNAs is dominated by competition between endo-siRNAs and miRNAs. Furthermore, the model predicts that competition is required for normal levels of endogenous small RNAs to be maintained. Although the model makes several assumptions about cell dynamics, the model is still useful in order to understand competition between small RNA pathways.


Sign in / Sign up

Export Citation Format

Share Document