scholarly journals Regulation of Energy Substrate Metabolism in Endurance Exercise

Author(s):  
Abdullah F. Alghannam ◽  
Mazen M. Ghaith ◽  
Maha H. Alhussain

The human body requires energy to function. Adenosine triphosphate (ATP) is the cellular currency for energy-requiring processes including mechanical work (i.e., exercise). ATP used by the cells is ultimately derived from the catabolism of energy substrate molecules—carbohydrates, fat, and protein. In prolonged moderate to high-intensity exercise, there is a delicate interplay between carbohydrate and fat metabolism, and this bioenergetic process is tightly regulated by numerous physiological, nutritional, and environmental factors such as exercise intensity and duration, body mass and feeding state. Carbohydrate metabolism is of critical importance during prolonged endurance-type exercise, reflecting the physiological need to regulate glucose homeostasis, assuring optimal glycogen storage, proper muscle fuelling, and delaying the onset of fatigue. Fat metabolism represents a sustainable source of energy to meet energy demands and preserve the ‘limited’ carbohydrate stores. Coordinated neural, hormonal and circulatory events occur during prolonged endurance-type exercise, facilitating the delivery of fatty acids from adipose tissue to the working muscle for oxidation. However, with increasing exercise intensity, fat oxidation declines and is unable to supply ATP at the rate of the exercise demand. Protein is considered a subsidiary source of energy supporting carbohydrates and fat metabolism, contributing to approximately 10% of total ATP turnover during prolonged endurance-type exercise. In this review we present an overview of substrate metabolism during prolonged endurance-type exercise and the regulatory mechanisms involved in ATP turnover to meet the energetic demands of exercise.

Shock ◽  
2020 ◽  
Vol 53 (2) ◽  
pp. 236-241
Author(s):  
Takayuki Irahara ◽  
Norio Sato ◽  
Kosuke Otake ◽  
Satoru Murata ◽  
Kazuo Inoue ◽  
...  

PEDIATRICS ◽  
1960 ◽  
Vol 26 (6) ◽  
pp. 914-914
Author(s):  
Benjamin H. Landing

This book begins with a general survey of the biochemistry and metabolism of fatty acids, glycerolipids, phospholipids, sphingolipids and cholesterol. A number of diseases involving "synthesis, transport or deposit" of these lipids are then reviewed, not including disorders of metabolism of steroids other than cholesterol, nor the carotenoids. The descriptions of clinical and pathologic aspects of the various diseases of lipid metabolism vary from good to excellent, and the author demonstrates both judgement and willingness to take a stand in some of the more controversial fields, such as the glycogen storage diseases.


2017 ◽  
Vol 63 (4) ◽  
Author(s):  
Susheel Sagar Bhat ◽  
Artur Jarmolowski ◽  
Zofia Szweykowska-Kulinska

Since their discovery, microRNAs have led to a huge shift in our understanding of the regulation of key biological processes. The discovery of epigenetic modifications that affect microRNA expression has added another layer of complexity to the already tightly controlled regulatory machinery. The presence of N6-methyl-adenosine (m6A) mark and its critical importance in miRNA biogenesis in animals adds to our understanding of the regulatory mechanisms.


1980 ◽  
Vol 59 (6) ◽  
pp. 469-478 ◽  
Author(s):  
N. L. Jones ◽  
G. J. F. Heigenhauser ◽  
A. Kuksis ◽  
C. G. Matsos ◽  
J. R. Sutton ◽  
...  

1. To investigate differences between the metabolic effects of light and heavy exercise, five healthy males (mean maximal oxygen intake 3.92 litres/min) exercised for 40 min at 36% maximum power (light work) and 70% maximum power (heavy work) on separate days, after an overnight fast. 2. A steady state was achieved in both studies between 20 and 40 min in: oxygen intake (1.42 and 2.64 litres/min respectively); respiratory exchange ratio (0.89 and 1.01); plasma lactate concentration (1.78 and 9.94 mmol/l). 3. Plasma palmitate turnover rate (14C) was unchanged from resting values in light work but was decreased by 40% (from 104 ± 16 to 63 ± 8 μmol/min) in heavy work. Heavy work was associated with falls in the plasma concentrations of all free fatty acids measured: palmitic acid (C16:0), oleic acid (C18:1), stearic acid (C18:0), linoleic acid (C18:2) and palmitoleic acid (C16:1). 4. In contrast to the fall in palmitate turnover the increase in plasma glycerol was greater in heavy exercise (0.054–0.229 mmol/l) than in light exercise (0.053–0.094 mmol/l), suggesting that lipolysis was occurring which did not lead to influx of free fatty acids into plasma. 5. In light exercise fat metabolism may be controlled to favour adipose tissue lipolysis and extraction of free fatty acids by muscle from the circulation, whereas in heavy exercise adipose tissue lipolysis is inhibited and hydrolysis of muscle triglycerides may play a more important part. 6. The finding of a high respiratory exchange ratio may not exclude the use of fat as a major fuel source in exercise associated with lactate production.


1977 ◽  
Vol 42 (5) ◽  
pp. 694-698 ◽  
Author(s):  
L. C. Wang ◽  
R. E. Peter

Unanesthetized, male rats were exposed to normal air (NA), or NA and a 4 h-exposure of He-O2 (79% helium, 21% oxygen) at ambient temperature (Ta) of 22 or - 10 degrees C. Blood samples from each individual were taken from a chronically implanted carotid cannula at 1) preexposure, 2) during exposure, 3) 2.5 h after exposure, and 4) 19–20 h after exposure. Exposure to He-O2 at 22 degrees C caused an increase in plasma free fatty acids (FFA) and corticosterone of 45% and 49%, respectively, with little change in plasma glucose and thyroxine. Exposure to He-O2 at 10 degrees C for 3 h invariably induced hypothermia with body temperature (Tb) decreased to 23.7 +- 0.5 degrees C (N = 10). During hypothermia, plasma glucose, FFA, and corticosterone were significantly higher (P LESS THAN 0.05) than those at preexposure and those after exposure to NA at -10 degrees C. During spontaneous recovery from hypothermia, at Ta = 19 degrees C and NA, glucose, corticosterone, and thyroxine returned to normal, but FFA remained significantly higher than at preexposure. The ability of animals to rewarm spontaneously from hypothermia and the quick return of metabolic substrates and hormones to normal after rewarming indicates the preservation of regulatory mechanisms for metabolism at depressed Tb when hypothermia is induced by He-O2 and cold.


Nutrients ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 1179
Author(s):  
Aleksandra Stamenkovic ◽  
Riya Ganguly ◽  
Michel Aliani ◽  
Amir Ravandi ◽  
Grant N. Pierce

Fatty acids come in a variety of structures and, because of this, create a variety of functions for these lipids. Some fatty acids have a role to play in energy metabolism, some help in lipid storage, cell structure, the physical state of the lipid, and even in food stability. Fatty acid metabolism plays a particularly important role in meeting the energy demands of the heart. It is the primary source of myocardial energy in control conditions. Its role changes dramatically in disease states in the heart, but the pathologic role these fatty acids play depends upon the type of cardiovascular disease and the type of fatty acid. However, no matter how good a food is for one’s health, its taste will ultimately become a deciding factor in its influence on human health. No food will provide health benefits if it is not ingested. This review discusses the taste characteristics of culinary oils that contain fatty acids and how these fatty acids affect the performance of the heart during healthy and diseased conditions. The contrasting contributions that different fatty acid molecules have in either promoting cardiac pathologies or protecting the heart from cardiovascular disease is also highlighted in this article.


2019 ◽  
Vol 70 (17) ◽  
pp. 4379-4389 ◽  
Author(s):  
Magdalena Arasimowicz-Jelonek ◽  
Jolanta Floryszak-Wieczorek

Abstract Although peroxynitrite (ONOO−) has been well documented as a nitrating cognate of nitric oxide (NO) in plant cells, modifications of proteins, fatty acids, and nucleotides by nitration are relatively under-explored topics in plant NO research. As a result, they are seen mainly as hallmarks of redox processes or as markers of nitro-oxidative stress under unfavorable conditions, similar to those observed in human and other animal systems. Protein tyrosine nitration is the best-known nitrative modification in the plant system and can be promoted by the action of both ONOO− and related NO-derived oxidants within the cell environment. Recent progress in ‘omics’ and modeling tools have provided novel biochemical insights into the physiological and pathophysiological fate of nitrated proteins. The nitration process can be specifically involved in various cell regulatory mechanisms that control redox signaling via nitrated cGMP or nitrated fatty acids. In addition, there is evidence to suggest that nitrative modifications of nucleotides embedded in DNA and RNA can be considered as smart switches of gene expression that fine-tune adaptive cellular responses to stress. This review highlights recent advances in our understanding of the potential implications of biotargets in the regulation of intracellular traffic and plant biological processes.


2010 ◽  
Vol 77 (2) ◽  
pp. 190-198 ◽  
Author(s):  
Ali Zidi ◽  
Víctor M Fernández-Cabanás ◽  
Juan Carrizosa ◽  
Jordi Jordana ◽  
Baltasar Urrutia ◽  
...  

Hormone-sensitive lipase (LIPE) plays a fundamental role in the regulation of energy balance by releasing free fatty acids from adipose triacylglycerol stores. These fatty acids can be subsequently transferred to other body compartments to be oxidized or employed in other biochemical reactions. This enzymic function is particularly important in lactating animals because the synthesis of milk components involves the mobilization of lipid depots to satisfy the large energy demands of the mammary gland. In the current study, we partially sequenced the goat LIPE gene in several individuals. In doing so, we identified two synonymous polymorphisms at exons 2 (c.327C>A>T, triallelic polymorphism) and 3 (c.558C>T). Moreover, we found a mis-sense polymorphism at exon 6 (c.1162G>T) that involves an alanine to serine substitution at position 388. Analysis with Polyphen and Panther softwares revealed that this amino acid replacement is expected to be neutral. Performance of an association analysis with a variety of milk traits revealed that goat LIPE genotype has highly suggestive effects on milk yield (P=0·0032) as well as on C18:3 n-6g (P=0·0051), trans-10 cis-12 CLA (P=0·007) and C12:0 (P=0·0084) milk contents. These associations are concordant with the preference of LIPE to selectively mobilize medium-chain and unsaturated fatty acids.


Sign in / Sign up

Export Citation Format

Share Document