scholarly journals Sex Chromosomes Are Severely Disrupted in Gastric Cancer Cell Lines

2020 ◽  
Vol 21 (13) ◽  
pp. 4598
Author(s):  
Sooeun Oh ◽  
Kyoungmi Min ◽  
Myungshin Kim ◽  
Suk Kyeong Lee

Sex has not received enough attention as an important biological variable in basic research, even though the sex of cells often affects cell proliferation, differentiation, apoptosis, and response to stimulation. Knowing and considering the sex of cells used in basic research is essential as preclinical and clinical studies are planned based on basic research results. Cell lines derived from tumor have been widely used for proof-of-concept experiments. However, cell lines may have limitations in testing the effect of sex on cell level, as chromosomal abnormality is the single most characteristic feature of tumor. To examine the status of sex chromosomes in a cell line, 12 commercially available gastric carcinoma (GC) cell lines were analyzed using several different methods. Loss of Y chromosome (LOY) accompanied with X chromosome duplication was found in three (SNU-484, KATO III, and MKN-1) out of the six male-derived cell lines, while one cell line (SNU-638) showed at least partial deletion in the Y chromosome. Two (SNU-5 and MKN-28) out of six female-derived cell lines showed a loss of one X chromosome, while SNU-620 gained one extra copy of the X chromosome, resulting in an XXX karyotype. We found that simple polymerase chain reaction (PCR)-based sex determination gives a clue for LOY for male-derived cells, but it does not provide detailed information for the gain or loss of the X chromosome. Our results suggest that carefully examining the sex chromosome status of cell lines is necessary before using them to test the effect of sex on cell level.

1977 ◽  
Vol 19 (3) ◽  
pp. 537-541 ◽  
Author(s):  
J. E. K. Cooper

The distribution of constitutive heterochromatin has been examined by C-banding in two somatic cell lines, grown in vitro, from a female Microtus agrestis. One line retains one intact X chromosome together with the short arm of the other X chromosome, while the other cell line retains only the short arm of one X chromosome. Thus, each cell line has lost substantial amounts of heterochromatin from the sex chromosomes, but this material has been deleted from the cells, and not translocated to other chromosomes. Nonetheless, both cell lines continue to propagate well in vitro.


2020 ◽  
Vol 12 (6) ◽  
pp. 965-977 ◽  
Author(s):  
Iulia Darolti ◽  
Alison E Wright ◽  
Judith E Mank

Abstract The loss of recombination triggers divergence between the sex chromosomes and promotes degeneration of the sex-limited chromosome. Several livebearers within the genus Poecilia share a male-heterogametic sex chromosome system that is roughly 20 Myr old, with extreme variation in the degree of Y chromosome divergence. In Poecilia picta, the Y is highly degenerate and associated with complete X chromosome dosage compensation. In contrast, although recombination is restricted across almost the entire length of the sex chromosomes in Poecilia reticulata and Poecilia wingei, divergence between the X chromosome and the Y chromosome is very low. This clade therefore offers a unique opportunity to study the forces that accelerate or hinder sex chromosome divergence. We used RNA-seq data from multiple families of both P. reticulata and P. wingei, the species with low levels of sex chromosome divergence, to differentiate X and Y coding sequences based on sex-limited SNP inheritance. Phylogenetic tree analyses reveal that occasional recombination has persisted between the sex chromosomes for much of their length, as X- and Y-linked sequences cluster by species instead of by gametolog. This incomplete recombination suppression maintains the extensive homomorphy observed in these systems. In addition, we see differences between the previously identified strata in the phylogenetic clustering of X–Y orthologs, with those that cluster by chromosome located in the older stratum, the region previously associated with the sex-determining locus. However, recombination arrest appears to have expanded throughout the sex chromosomes more gradually instead of through a stepwise process associated with inversions.


Genetics ◽  
1984 ◽  
Vol 107 (4) ◽  
pp. 591-610
Author(s):  
Robert W Hardy ◽  
Dan L Lindsley ◽  
Kenneth J Livak ◽  
Barbara Lewis ◽  
Annegrethe L Siversten ◽  
...  

ABSTRACT Males carrying a large deficiency in the long arm of the Y chromosome known to delete the fertility gene kl-2 are sterile and exhibit a complex phenotype: (1) First metaphase chromosomes are irregular in outline and appear sticky; (2) spermatids contain micronuclei; (3) the nebenkerns of the spermatids are nonuniform in size; (4) a high molecular weight protein ordinarily present in sperm is absent; and (5) crystals appear in the nucleus and cytoplasm of spermatocytes and spermatids. In such males that carry Ste  + on their X chromosome the crystals appear long and needle shaped; in Ste males the needles are much shorter and assemble into star-shaped aggregates. The large deficiency may be subdivided into two shorter component deficiencies. The more distal is male sterile and lacks the high molecular weight polypeptide; the more proximal is responsible for the remainder of the phenotype. Ste males carrying the more proximal component deficiency are sterile, but Ste  + males are fertile. Genetic studies of chromosome segregation in such males reveal that (1) both the sex chromosomes and the large autosomes undergo nondisjunction, (2) the fourth chromosomes disjoin regularly, (3) sex chromosome nondisjunction is more frequent in cells in which the second or third chromosomes nondisjoin than in cells in which autosomal disjunction is regular, (4) in doubly exceptional cells, the sex chromosomes tend to segregate to the opposite pole from the autosomes and (5) there is meiotic drive; i.e., reciprocal meiotic products are not recovered with equal frequencies, complements with fewer chromosomes being recovered more frequently than those with more chromosomes. The proximal component deficiency can itself be further subdivided into two smaller component deficiencies, both of which have nearly normal spermatogenic phenotypes as observed in the light microscope. Meiosis in Ste  + males carrying either of these small Y deficiencies is normal; Ste males, however, exhibit low levels of sex chromosome nondisjunction with either deficient Y. The meiotic phenotype is apparently sensitive to the amount of Y chromosome missing and to the Ste constitution of the X chromosome.


2019 ◽  
Author(s):  
Ruixin Wang ◽  
Dongni Wang ◽  
Dekai Kang ◽  
Xusen Guo ◽  
Chong Guo ◽  
...  

BACKGROUND In vitro human cell line models have been widely used for biomedical research to predict clinical response, identify novel mechanisms and drug response. However, one-fifth to one-third of cell lines have been cross-contaminated, which can seriously result in invalidated experimental results, unusable therapeutic products and waste of research funding. Cell line misidentification and cross-contamination may occur at any time, but authenticating cell lines is infrequent performed because the recommended genetic approaches are usually require extensive expertise and may take a few days. Conversely, the observation of live-cell morphology is a direct and real-time technique. OBJECTIVE The purpose of this study was to construct a novel computer vision technology based on deep convolutional neural networks (CNN) for “cell face” recognition. This was aimed to improve cell identification efficiency and reduce the occurrence of cell-line cross contamination. METHODS Unstained optical microscopy images of cell lines were obtained for model training (about 334 thousand patch images), and testing (about 153 thousand patch images). The AI system first trained to recognize the pure cell morphology. In order to find the most appropriate CNN model,we explored the key image features in cell morphology classification tasks using the classical CNN model-Alexnet. After that, a preferred fine-grained recognition model BCNN was used for the cell type identification (seven classifications). Next, we simulated the situation of cell cross-contamination and mixed the cells in pairs at different ratios. The detection of the cross-contamination was divided into two levels, whether the cells are mixed and what the contaminating cell is. The specificity, sensitivity, and accuracy of the model were tested separately by external validation. Finally, the segmentation model DialedNet was used to present the classification results at the single cell level. RESULTS The cell texture and density were the influencing factors that can be better recognized by the bilinear convolutional neural network (BCNN) comparing to AlexNet. The BCNN achieved 99.5% accuracy in identifying seven pure cell lines and 86.3% accuracy for detecting cross-contamination (mixing two of the seven cell lines). DilatedNet was applied to the semantic segment for analyzing in single-cell level and achieved an accuracy of 98.2%. CONCLUSIONS This study successfully demonstrated that cell lines can be morphologically identified using deep learning models. Only light-microscopy images and no reagents are required, enabling most labs to routinely perform cell identification tests.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yisrael Rappaport ◽  
Hanna Achache ◽  
Roni Falk ◽  
Omer Murik ◽  
Oren Ram ◽  
...  

AbstractDuring meiosis, gene expression is silenced in aberrantly unsynapsed chromatin and in heterogametic sex chromosomes. Initiation of sex chromosome silencing is disrupted in meiocytes with sex chromosome-autosome translocations. To determine whether this is due to aberrant synapsis or loss of continuity of sex chromosomes, we engineered Caenorhabditis elegans nematodes with non-translocated, bisected X chromosomes. In early meiocytes of mutant males and hermaphrodites, X segments are enriched with euchromatin assembly markers and active RNA polymerase II staining, indicating active transcription. Analysis of RNA-seq data showed that genes from the X chromosome are upregulated in gonads of mutant worms. Contrary to previous models, which predicted that any unsynapsed chromatin is silenced during meiosis, our data indicate that unsynapsed X segments are transcribed. Therefore, our results suggest that sex chromosome chromatin has a unique character that facilitates its meiotic expression when its continuity is lost, regardless of whether or not it is synapsed.


Endocrinology ◽  
2013 ◽  
Vol 154 (3) ◽  
pp. 1092-1104 ◽  
Author(s):  
Xuqi Chen ◽  
Rebecca McClusky ◽  
Yuichiro Itoh ◽  
Karen Reue ◽  
Arthur P. Arnold

Abstract Three different models of MF1 strain mice were studied to measure the effects of gonadal secretions and sex chromosome type and number on body weight and composition, and on related metabolic variables such as glucose homeostasis, feeding, and activity. The 3 genetic models varied sex chromosome complement in different ways, as follows: 1) “four core genotypes” mice, comprising XX and XY gonadal males, and XX and XY gonadal females; 2) the XY* model comprising groups similar to XO, XX, XY, and XXY; and 3) a novel model comprising 6 groups having XO, XX, and XY chromosomes with either testes or ovaries. In gonadally intact mice, gonadal males were heavier than gonadal females, but sex chromosome complement also influenced weight. The male/female difference was abolished by adult gonadectomy, after which mice with 2 sex chromosomes (XX or XY) had greater body weight and percentage of body fat than mice with 1 X chromosome. A second sex chromosome of either type, X or Y, had similar effects, indicating that the 2 sex chromosomes each possess factors that influence body weight and composition in the MF1 genetic background. Sex chromosome complement also influenced metabolic variables such as food intake and glucose tolerance. The results reveal a role for the Y chromosome in metabolism independent of testes and gonadal hormones and point to a small number of X–Y gene pairs with similar coding sequences as candidates for causing these effects.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Lingzhan Xue ◽  
Yu Gao ◽  
Meiying Wu ◽  
Tian Tian ◽  
Haiping Fan ◽  
...  

Abstract Background The origin of sex chromosomes requires the establishment of recombination suppression between the proto-sex chromosomes. In many fish species, the sex chromosome pair is homomorphic with a recent origin, providing species for studying how and why recombination suppression evolved in the initial stages of sex chromosome differentiation, but this requires accurate sequence assembly of the X and Y (or Z and W) chromosomes, which may be difficult if they are recently diverged. Results Here we produce a haplotype-resolved genome assembly of zig-zag eel (Mastacembelus armatus), an aquaculture fish, at the chromosomal scale. The diploid assembly is nearly gap-free, and in most chromosomes, we resolve the centromeric and subtelomeric heterochromatic sequences. In particular, the Y chromosome, including its highly repetitive short arm, has zero gaps. Using resequencing data, we identify a ~7 Mb fully sex-linked region (SLR), spanning the sex chromosome centromere and almost entirely embedded in the pericentromeric heterochromatin. The SLRs on the X and Y chromosomes are almost identical in sequence and gene content, but both are repetitive and heterochromatic, consistent with zero or low recombination. We further identify an HMG-domain containing gene HMGN6 in the SLR as a candidate sex-determining gene that is expressed at the onset of testis development. Conclusions Our study supports the idea that preexisting regions of low recombination, such as pericentromeric regions, can give rise to SLR in the absence of structural variations between the proto-sex chromosomes.


Genes ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1434
Author(s):  
Ana Gil-Fernández ◽  
Marta Ribagorda ◽  
Marta Martín-Ruiz ◽  
Pablo López-Jiménez ◽  
Tamara Laguna ◽  
...  

X and Y chromosomes in mammals are different in size and gene content due to an evolutionary process of differentiation and degeneration of the Y chromosome. Nevertheless, these chromosomes usually share a small region of homology, the pseudoautosomal region (PAR), which allows them to perform a partial synapsis and undergo reciprocal recombination during meiosis, which ensures their segregation. However, in some mammalian species the PAR has been lost, which challenges the pairing and segregation of sex chromosomes in meiosis. The African pygmy mouse Mus mattheyi shows completely differentiated sex chromosomes, representing an uncommon evolutionary situation among mouse species. We have performed a detailed analysis of the location of proteins involved in synaptonemal complex assembly (SYCP3), recombination (RPA, RAD51 and MLH1) and sex chromosome inactivation (γH2AX) in this species. We found that neither synapsis nor chiasmata are found between sex chromosomes and their pairing is notably delayed compared to autosomes. Interestingly, the Y chromosome only incorporates RPA and RAD51 in a reduced fraction of spermatocytes, indicating a particular DNA repair dynamic on this chromosome. The analysis of segregation revealed that sex chromosomes are associated until metaphase-I just by a chromatin contact. Unexpectedly, both sex chromosomes remain labelled with γH2AX during first meiotic division. This chromatin contact is probably enough to maintain sex chromosome association up to anaphase-I and, therefore, could be relevant to ensure their reductional segregation. The results presented suggest that the regulation of both DNA repair and epigenetic modifications in the sex chromosomes can have a great impact on the divergence of sex chromosomes and their proper transmission, widening our understanding on the relationship between meiosis and the evolution of sex chromosomes in mammals.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Sho Nakai ◽  
Shutaro Yamada ◽  
Hidetatsu Outani ◽  
Takaaki Nakai ◽  
Naohiro Yasuda ◽  
...  

Abstract Approximately 60–70% of EWSR1-negative small blue round cell sarcomas harbour a rearrangement of CIC, most commonly CIC-DUX4. CIC-DUX4 sarcoma (CDS) is an aggressive and often fatal high-grade sarcoma appearing predominantly in children and young adults. Although cell lines and their xenograft models are essential tools for basic research and development of antitumour drugs, few cell lines currently exist for CDS. We successfully established a novel human CDS cell line designated Kitra-SRS and developed orthotopic tumour xenografts in nude mice. The CIC-DUX4 fusion gene in Kitra-SRS cells was generated by t(12;19) complex chromosomal rearrangements with an insertion of a chromosome segment including a DUX4 pseudogene component. Kitra-SRS xenografts were histologically similar to the original tumour and exhibited metastatic potential to the lungs. Kitra-SRS cells displayed autocrine activation of the insulin-like growth factor 1 (IGF-1)/IGF-1 receptor (IGF-1R) pathway. Accordingly, treatment with the IGF-1R inhibitor, linsitinib, attenuated Kitra-SRS cell growth and IGF-1-induced activation of IGF-1R/AKT signalling both in vitro and in vivo. Furthermore, upon screening 1134 FDA-approved drugs, the responses of Kitra-SRS cells to anticancer drugs appeared to reflect those of the primary tumour. Our model will be a useful modality for investigating the molecular pathology and therapy of CDS.


2020 ◽  
Vol 12 (558) ◽  
pp. eaaz5677 ◽  
Author(s):  
Emily J. Davis ◽  
Lauren Broestl ◽  
Samira Abdulai-Saiku ◽  
Kurtresha Worden ◽  
Luke W. Bonham ◽  
...  

A major sex difference in Alzheimer’s disease (AD) is that men with the disease die earlier than do women. In aging and preclinical AD, men also show more cognitive deficits. Here, we show that the X chromosome affects AD-related vulnerability in mice expressing the human amyloid precursor protein (hAPP), a model of AD. XY-hAPP mice genetically modified to develop testicles or ovaries showed worse mortality and deficits than did XX-hAPP mice with either gonad, indicating a sex chromosome effect. To dissect whether the absence of a second X chromosome or the presence of a Y chromosome conferred a disadvantage on male mice, we varied sex chromosome dosage. With or without a Y chromosome, hAPP mice with one X chromosome showed worse mortality and deficits than did those with two X chromosomes. Thus, adding a second X chromosome conferred resilience to XY males and XO females. In addition, the Y chromosome, its sex-determining region Y gene (Sry), or testicular development modified mortality in hAPP mice with one X chromosome such that XY males with testicles survived longer than did XY or XO females with ovaries. Furthermore, a second X chromosome conferred resilience potentially through the candidate gene Kdm6a, which does not undergo X-linked inactivation. In humans, genetic variation in KDM6A was linked to higher brain expression and associated with less cognitive decline in aging and preclinical AD, suggesting its relevance to human brain health. Our study suggests a potential role for sex chromosomes in modulating disease vulnerability related to AD.


Sign in / Sign up

Export Citation Format

Share Document