brain expression
Recently Published Documents


TOTAL DOCUMENTS

230
(FIVE YEARS 49)

H-INDEX

41
(FIVE YEARS 6)

Pharmaceutics ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2064
Author(s):  
Stefania Olla ◽  
Maristella Steri ◽  
Alessia Formato ◽  
Michael B. Whalen ◽  
Silvia Corbisiero ◽  
...  

In multiple sclerosis (MS), oxidative stress (OS) is implicated in the neurodegenerative processes that occur from the beginning of the disease. Unchecked OS initiates a vicious circle caused by its crosstalk with inflammation, leading to demyelination, axonal damage and neuronal loss. The failure of MS antioxidant therapies relying on the use of endogenous and natural compounds drives the application of novel approaches to assess target relevance to the disease prior to preclinical testing of new drug candidates. To identify drugs that can act as regulators of intracellular oxidative homeostasis, we applied an in silico approach that links genome-wide MS associations and molecular quantitative trait loci (QTLs) to proteins of the OS pathway. We found 10 drugs with both central nervous system and oral bioavailability, targeting five out of the 21 top-scoring hits, including arginine methyltransferase (CARM1), which was first linked to MS. In particular, the direction of brain expression QTLs for CARM1 and protein kinase MAPK1 enabled us to select BIIB021 and PEITC drugs with the required target modulation. Our study highlights OS-related molecules regulated by functional MS variants that could be targeted by existing drugs as a supplement to the approved disease-modifying treatments.


2021 ◽  
Author(s):  
Benjamin C Shaw ◽  
Henry C Snider ◽  
Andrew K Turner ◽  
Diana J Zajac ◽  
James F Simpson ◽  
...  

Background: Genetic variants in TREM2 are strongly associated with Alzheimer's Disease (AD) risk but alternative splicing in TREM2 transcripts has not been comprehensively described. Objective: Recognizing that alternative splice variants can result in reduced gene expression and/or altered function, we sought to fully characterize splice variation in TREM2. Methods: Human blood and anterior cingulate autopsy tissue from 61 donors were used for genotyping and cDNA synthesis followed by both end-point and quantitative PCR to identify and quantify novel TREM2 isoforms. Results: In addition to previously described transcripts lacking exon 3 or exon 4, or retaining part of intron 3, we identified novel isoforms lacking exon 2, along with isoforms lacking multiple exons. Isoforms lacking exon 2 were predominant at approximately 10% of TREM2 mRNA in the brain. Expression of TREM2 and frequency of exon 2 skipping did not differ between AD samples and non-AD controls (p = 0.1268 and p = 0.4909, respectively). Further, these novel splice isoforms were also observed across multiple tissues (brain, liver, lung, kidney, heart, aorta, skeletal muscle) with similar frequency (range 5.3 - 13.0%). Using ectopic expression, we found that the exon 2 skipped isoform D2-TREM2 is translated to protein and localizes similarly to full-length TREM2 protein, and that both D2-TREM2 and FL-TREM2 proteins are primarily retained in the Golgi complex. Conclusion: Since the TREM2 ligand binding domain is encoded by exon 2, and skipping this exon retains reading frame while conserving localization, we hypothesize that D2-TREM2 acts as an inhibitor of TREM2 and that targeting TREM2 splicing may be a novel therapeutic pathway for AD.


2021 ◽  
Author(s):  
Robyn Klein ◽  
Allison Soung ◽  
Cheick Sissoko ◽  
Anna Nordvig ◽  
Peter Canoll ◽  
...  

Abstract Infection with the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is associated with onset of neurological and psychiatric symptoms during and after the acute phase of illness1-4. Acute SARS-CoV-2 disease (COVID-19) presents with deficits of memory, attention, movement coordination, and mood. The mechanisms of these central nervous system symptoms remain largely unknown.In an established hamster model of intranasal infection with SARS-CoV-25, and patients deceased from COVID-19, we report a lack of viral neuroinvasion despite aberrant BBB permeability, microglial activation, and brain expression of interleukin (IL)-1β and IL-6, especially within the hippocampus and the inferior olivary nucleus of the medulla, when compared with non-COVID control hamsters and humans who died from other infections, cardiovascular disease, uremia or trauma. In the hippocampus dentate gyrus of both COVID-19 hamsters and humans, fewer cells expressed doublecortin, a marker of neuroblasts and immature neurons.Despite absence of viral neurotropism, we find SARS-CoV-2-induced inflammation, and hypoxia in humans, affect brain regions essential for fine motor function, learning, memory, and emotional responses, and result in loss of adult hippocampal neurogenesis. Neuroinflammation could affect cognition and behaviour via disruption of brain vasculature integrity, neurotransmission, and neurogenesis, acute effects that may persist in COVID-19 survivors with long-COVID symptoms.


2021 ◽  
Author(s):  
Tanja C. Nijboer ◽  
Ellen V.S. Hessel ◽  
Gijs W. van Haaften ◽  
Martine J. van Zandvoort ◽  
Peter J. van der Spek ◽  
...  

AbstractColour agnosia is a disorder that impairs colour knowledge (naming, recognition) despite intact colour perception. Previously, we have identified the first and only-known family with hereditary developmental colour agnosia. The aim of the current study was to explore genomic regions and candidate genes that potentially cause this trait in this family. For three family members with developmental colour agnosia and three unaffected family members CGH-array analysis and exome sequencing was performed, and linkage analysis was carried out using DominantMapper, resulting in the identification of 19 cosegregating chromosomal regions. Whole exome sequencing resulted in 11 rare coding variants present in all affected family members with developmental colour agnosia and absent in unaffected members. These variants affected genes that have been implicated in neural processes and functions (CACNA2D4, DDX25, GRINA, MYO15A), that have a indirect link to brain function or development (MAML2, STAU1, TMED3), and a remaining group lacking brain expression or involved in non-neural traits (DEPDC7, OR1J1, OR8D4, RABEPK). Although this is an explorative study, the small set of candidate genes that could serve as a starting point for unravelling mechanisms of higher level cognitive functions and cortical specialization, and disorders therein such as developmental colour agnosia.


2021 ◽  
Vol 4 (11) ◽  
pp. e202000703
Author(s):  
Karen Arnaud ◽  
Vanessa Oliveira Moreira ◽  
Jean Vincent ◽  
Glenn Dallerac ◽  
Chantal Dubreuil ◽  
...  

Elevated amyloid precursor protein (APP) expression in the choroid plexus suggests an important role for extracellular APP metabolites such as sAPPα in cerebrospinal fluid. Despite widespread App brain expression, we hypothesized that specifically targeting choroid plexus expression could alter animal physiology. Through various genetic and viral approaches in the adult mouse, we show that choroid plexus APP levels significantly impact proliferation in both subventricular zone and hippocampus dentate gyrus neurogenic niches. Given the role of Aβ peptides in Alzheimer disease pathogenesis, we also tested whether favoring the production of Aβ in choroid plexus could negatively affect niche functions. After AAV5-mediated long-term expression of human mutated APP specifically in the choroid plexus of adult wild-type mice, we observe reduced niche proliferation, reduced hippocampus APP expression, behavioral defects in reversal learning, and deficits in hippocampal long-term potentiation. Our findings highlight the unique role played by the choroid plexus in regulating brain function and suggest that targeting APP in choroid plexus may provide a means to improve hippocampus function and alleviate disease-related burdens.


2021 ◽  
pp. 113533
Author(s):  
Karina Mayagoitia ◽  
Andrew J. Tolan ◽  
Shohali Shammi ◽  
Samuel D. Shin ◽  
Jesus A. Menchaca ◽  
...  
Keyword(s):  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Timothy S. Breton ◽  
William G. B. Sampson ◽  
Benjamin Clifford ◽  
Anyssa M. Phaneuf ◽  
Ilze Smidt ◽  
...  

AbstractThe SREB (Super-conserved Receptors Expressed in Brain) family of G protein-coupled receptors is highly conserved across vertebrates and consists of three members: SREB1 (orphan receptor GPR27), SREB2 (GPR85), and SREB3 (GPR173). Ligands for these receptors are largely unknown or only recently identified, and functions for all three are still beginning to be understood, including roles in glucose homeostasis, neurogenesis, and hypothalamic control of reproduction. In addition to the brain, all three are expressed in gonads, but relatively few studies have focused on this, especially in non-mammalian models or in an integrated approach across the entire receptor family. The purpose of this study was to more fully characterize sreb genes in fish, using comparative genomics and gonadal expression analyses in five diverse ray-finned (Actinopterygii) species across evolution. Several unique characteristics were identified in fish, including: (1) a novel, fourth euteleost-specific gene (sreb3b or gpr173b) that likely emerged from a copy of sreb3 in a separate event after the teleost whole genome duplication, (2) sreb3a gene loss in Order Cyprinodontiformes, and (3) expression differences between a gar species and teleosts. Overall, gonadal patterns suggested an important role for all sreb genes in teleost testicular development, while gar were characterized by greater ovarian expression that may reflect similar roles to mammals. The novel sreb3b gene was also characterized by several unique features, including divergent but highly conserved amino acid positions, and elevated brain expression in puffer (Dichotomyctere nigroviridis) that more closely matched sreb2, not sreb3a. These results demonstrate that SREBs may differ among vertebrates in genomic structure and function, and more research is needed to better understand these roles in fish.


2021 ◽  
Vol 89 (9) ◽  
pp. S120-S121
Author(s):  
Bharathi Gadad ◽  
Javier-Vargas Medrano ◽  
Valeria Diaz-Pacheco ◽  
Enrique Ramos ◽  
Barbara Yang ◽  
...  

2021 ◽  
Author(s):  
Yasuko Tobari ◽  
Constantina Theofanopoulou ◽  
Chihiro Mori ◽  
Yoshimi Sato ◽  
Momoka Marutani ◽  
...  

AbstractThe Bengalese finch was domesticated more than 250 years ago from the wild white-rumped munia. Similar to other domesticated species, Bengalese finches show a reduced fear response and have lower corticosterone levels, compared to white-rumped munias. Bengalese finches and munias also have different song types. Since oxytocin (OT) has been found to be involved in stress coping and auditory processing, we tested whether the OT sequence and brain expression pattern and content differ in wild munias and domesticated Bengalese finches. We identified intra-strain variability in the untranslated regions of the OT sequence in Bengalese finches in comparison to the munia OT. Several of these changes fall in specific transcription factor binding sites, which show either a conserved or a relaxed evolutionary trend in the avian lineage, and in vertebrates in general. Although in situ hybridization in several hypothalamic nuclei did not reveal significant differences in the number of cells expressing OT between the two strains, real-time quantitative PCR showed significantly lower OT mRNA expression in the diencephalon of the Bengalese finches relative to munias. Our study thus points to a decreased OT synthesis in the domestic strain compared with the wild strain in birds. This is an opposite pattern from that found in some domesticated mammals, suggesting that different processes of OT function might have occurred in mammals and birds under domestication.


Sign in / Sign up

Export Citation Format

Share Document