scholarly journals Leptin and Cancer: Updated Functional Roles in Carcinogenesis, Therapeutic Niches, and Developments

2021 ◽  
Vol 22 (6) ◽  
pp. 2870
Author(s):  
Tsung-Chieh Lin ◽  
Michael Hsiao

Leptin is an obesity-associated adipokine that is known to regulate energy metabolism and reproduction and to control appetite via the leptin receptor. Recent work has identified specific cell types other than adipocytes that harbor leptin and leptin receptor expression, particularly in cancers and tumor microenvironments, and characterized the role of this signaling axis in cancer progression. Furthermore, the prognostic significance of leptin in various types of cancer and the ability to noninvasively detect leptin levels in serum samples have attracted attention for potential clinical applications. Emerging findings have demonstrated the direct and indirect biological effects of leptin in regulating cancer proliferation, metastasis, angiogenesis and chemoresistance, warranting the exploration of the underlying molecular mechanisms to develop a novel therapeutic strategy. In this review article, we summarize and integrate transcriptome and clinical data from cancer patients together with the recent findings related to the leptin signaling axis in the aforementioned malignant phenotypes. In addition, a comprehensive analysis of leptin and leptin receptor distribution in a pancancer panel and in individual cell types of specific organs at the single-cell level is presented, identifying those sites that are prone to leptin-mediated tumorigenesis. Our results shed light on the role of leptin in cancer and provide guidance and potential directions for further research for scientists in this field.

2019 ◽  
Vol 37 (15_suppl) ◽  
pp. e12548-e12548
Author(s):  
Lucas Wang ◽  
Brittany Harlow ◽  
Laura Bowers ◽  
Stephen Hursting ◽  
Linda A deGraffenried ◽  
...  

e12548 Background: Almost 40% of women with breast cancer are obese at diagnosis. Obesity is associated with a worse prognosis in triple negative breast cancer (TNBC). Preclinical studies have shown that leptin is an important factor associated with TNBC by promoting cancer stem cell (CSC) enrichment and/or epithelial-to-mesenchymal transition (EMT). Transcription factors SNAIL, TWIST and ZEB are critical components in enhancing EMT in cancer cells. The specific mechanism(s) by leptin regulates SNAIL, TWIST and ZEB expression remain unclear, limiting the development of effective interventions to improve outcomes in obese TNBC patients. Recent studies have demonstrated that miR200c, downstream of leptin receptor signaling, regulates the expression of SNAIL1, TWIST and ZEB. We will test the hypothesis that leptin contributes to obesity-induced EMT/CSC in TNBC through modulation of miR200c. Methods: Ob-R (leptin receptor) expression was suppressed in TNBC MDA-MB-231 and E-Wnt cells using shRNA (Ob-R null). Ob-R and Ob-R null cells were exposed to sera pooled from lean or obese women, as well as lean sera supplemented with leptin, after which expression of SNAIL, TWIST, ZEB and miR200c was measured by qPCR, while activation of the JAK-STAT pathway was assessed by Western blotting. Results: TNBC cells exposed to obese and high leptin conditions demonstrated increased expression of EMT markers compared to levels expressed under lean conditions. The Ob-R WT and null cells were used to determine the specific role of leptin signaling in regulating expression of SNAIL, TWIST and ZEB through miR200c. Conclusions: Both obese and high leptin conditions result in increased expression of EMT regulators, suggesting that effective targeting of this pathway may provide clinical benefit in the obese breast cancer patient. Elucidating the specific mediators of this pathway will guide development of novel and more potent medical therapies.


Cancers ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 484 ◽  
Author(s):  
Hiroki Ide ◽  
Satoshi Inoue ◽  
Hiroshi Miyamoto

Previous preclinical studies have indicated that the activation of glucocorticoid receptor signaling results in inhibition of the growth of various types of tumors. Indeed, several glucocorticoids, such as dexamethasone and prednisone, have been prescribed for the treatment of, for example, hematological malignancies and castration-resistant prostate cancer. By contrast, the role of glucocorticoid-mediated glucocorticoid receptor signaling in the progression of bladder cancer remains far from being fully understood. Nonetheless, emerging evidence implies its unique functions in urothelial cancer cells. Moreover, the levels of glucocorticoid receptor expression have been documented to significantly associate with the prognosis of patients with bladder cancer. This review summarizes the available data suggesting the involvement of glucocorticoid-mediated glucocorticoid receptor signaling in urothelial tumor outgrowth and highlights the potential underlying molecular mechanisms. The molecules/pathways that contribute to modulating glucocorticoid receptor activity and function in bladder cancer cells are also discussed.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Stefania Raimondo ◽  
Chiara Corrado ◽  
Lavinia Raimondi ◽  
Giacomo De Leo ◽  
Riccardo Alessandro

In recent years the role of tumor microenvironment in the progression of hematological malignancies has been widely recognized. Recent studies have focused on how cancer cells communicate within the microenvironment. Among several factors (cytokines, growth factors, and ECM molecules), a key role has been attributed to extracellular vesicles (EV), released from different cell types. EV (microvesicles and exosomes) may affect stroma remodeling, host cell functions, and tumor angiogenesis by inducing gene expression modulation in target cells, thus promoting cancer progression and metastasis. Microvesicles and exosomes can be recovered from the blood and other body fluids of cancer patients and contain and deliver genetic and proteomic contents that reflect the cell of origin, thus constituting a source of new predictive biomarkers involved in cancer development and serving as possible targets for therapies. Moreover, due to their specific cell-tropism and bioavailability, EV can be considered natural vehicles suitable for drug delivery. Here we will discuss the recent advances in the field of EV as actors in hematological cancer progression, pointing out the role of these vesicles in the tumor-host interplay and in their use as biomarkers for hematological malignancies.


1999 ◽  
Vol 81 (06) ◽  
pp. 951-956 ◽  
Author(s):  
J. Corral ◽  
R. González-Conejero ◽  
J. Rivera ◽  
F. Ortuño ◽  
P. Aparicio ◽  
...  

SummaryThe variability of the platelet GP Ia/IIa density has been associated with the 807 C/T polymorphism (Phe 224) of the GP Ia gene in American Caucasian population. We have investigated the genotype and allelic frequencies of this polymorphism in Spanish Caucasians. The T allele was found in 35% of the 284 blood donors analyzed. We confirmed in 159 healthy subjects a significant association between the 807 C/T polymorphism and the platelet GP Ia density. The T allele correlated with high number of GP Ia molecules on platelet surface. In addition, we observed a similar association of this polymorphism with the expression of this protein in other blood cell types. The platelet responsiveness to collagen was determined by “in vitro” analysis of the platelet activation and aggregation response. We found no significant differences in these functional platelet parameters according to the 807 C/T genotype. Finally, results from 3 case/control studies involving 302 consecutive patients (101 with coronary heart disease, 104 with cerebrovascular disease and 97 with deep venous thrombosis) determined that the 807 C/T polymorphism of the GP Ia gene does not represent a risk factor for arterial or venous thrombosis.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ian T. Stancil ◽  
Jacob E. Michalski ◽  
Duncan Davis-Hall ◽  
Hong Wei Chu ◽  
Jin-Ah Park ◽  
...  

AbstractThe airway epithelium serves as the interface between the host and external environment. In many chronic lung diseases, the airway is the site of substantial remodeling after injury. While, idiopathic pulmonary fibrosis (IPF) has traditionally been considered a disease of the alveolus and lung matrix, the dominant environmental (cigarette smoking) and genetic (gain of function MUC5B promoter variant) risk factor primarily affect the distal airway epithelium. Moreover, airway-specific pathogenic features of IPF include bronchiolization of the distal airspace with abnormal airway cell-types and honeycomb cystic terminal airway-like structures with concurrent loss of terminal bronchioles in regions of minimal fibrosis. However, the pathogenic role of the airway epithelium in IPF is unknown. Combining biophysical, genetic, and signaling analyses of primary airway epithelial cells, we demonstrate that healthy and IPF airway epithelia are biophysically distinct, identifying pathologic activation of the ERBB-YAP axis as a specific and modifiable driver of prolongation of the unjammed-to-jammed transition in IPF epithelia. Furthermore, we demonstrate that this biophysical state and signaling axis correlates with epithelial-driven activation of the underlying mesenchyme. Our data illustrate the active mechanisms regulating airway epithelial-driven fibrosis and identify targets to modulate disease progression.


Author(s):  
Hee-Dae Kim ◽  
Jing Wei ◽  
Tanessa Call ◽  
Nicole Teru Quintus ◽  
Alexander J. Summers ◽  
...  

AbstractDepression is the leading cause of disability and produces enormous health and economic burdens. Current treatment approaches for depression are largely ineffective and leave more than 50% of patients symptomatic, mainly because of non-selective and broad action of antidepressants. Thus, there is an urgent need to design and develop novel therapeutics to treat depression. Given the heterogeneity and complexity of the brain, identification of molecular mechanisms within specific cell-types responsible for producing depression-like behaviors will advance development of therapies. In the reward circuitry, the nucleus accumbens (NAc) is a key brain region of depression pathophysiology, possibly based on differential activity of D1- or D2- medium spiny neurons (MSNs). Here we report a circuit- and cell-type specific molecular target for depression, Shisa6, recently defined as an AMPAR component, which is increased only in D1-MSNs in the NAc of susceptible mice. Using the Ribotag approach, we dissected the transcriptional profile of D1- and D2-MSNs by RNA sequencing following a mouse model of depression, chronic social defeat stress (CSDS). Bioinformatic analyses identified cell-type specific genes that may contribute to the pathogenesis of depression, including Shisa6. We found selective optogenetic activation of the ventral tegmental area (VTA) to NAc circuit increases Shisa6 expression in D1-MSNs. Shisa6 is specifically located in excitatory synapses of D1-MSNs and increases excitability of neurons, which promotes anxiety- and depression-like behaviors in mice. Cell-type and circuit-specific action of Shisa6, which directly modulates excitatory synapses that convey aversive information, identifies the protein as a potential rapid-antidepressant target for aberrant circuit function in depression.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Yu Zhang ◽  
Christopher D. Kontos ◽  
Brian H. Annex ◽  
Aleksander S. Popel

AbstractThe Ang–Tie signaling pathway is an important vascular signaling pathway regulating vascular growth and stability. Dysregulation in the pathway is associated with vascular dysfunction and numerous diseases that involve abnormal vascular permeability and endothelial cell inflammation. The understanding of the molecular mechanisms of the Ang–Tie pathway has been limited due to the complex reaction network formed by the ligands, receptors, and molecular regulatory mechanisms. In this study, we developed a mechanistic computational model of the Ang–Tie signaling pathway validated against experimental data. The model captures and reproduces the experimentally observed junctional localization and downstream signaling of the Ang–Tie signaling axis, as well as the time-dependent role of receptor Tie1. The model predicts that Tie1 modulates Tie2’s response to the context-dependent agonist Ang2 by junctional interactions. Furthermore, modulation of Tie1’s junctional localization, inhibition of Tie2 extracellular domain cleavage, and inhibition of VE-PTP are identified as potential molecular strategies for potentiating Ang2’s agonistic activity and rescuing Tie2 signaling in inflammatory endothelial cells.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Xiulin Jiang ◽  
Baiyang Liu ◽  
Zhi Nie ◽  
Lincan Duan ◽  
Qiuxia Xiong ◽  
...  

AbstractN6-methyladenosine (m6A) is the most prevalent, abundant and conserved internal cotranscriptional modification in eukaryotic RNAs, especially within higher eukaryotic cells. m6A modification is modified by the m6A methyltransferases, or writers, such as METTL3/14/16, RBM15/15B, ZC3H3, VIRMA, CBLL1, WTAP, and KIAA1429, and, removed by the demethylases, or erasers, including FTO and ALKBH5. It is recognized by m6A-binding proteins YTHDF1/2/3, YTHDC1/2 IGF2BP1/2/3 and HNRNPA2B1, also known as “readers”. Recent studies have shown that m6A RNA modification plays essential role in both physiological and pathological conditions, especially in the initiation and progression of different types of human cancers. In this review, we discuss how m6A RNA methylation influences both the physiological and pathological progressions of hematopoietic, central nervous and reproductive systems. We will mainly focus on recent progress in identifying the biological functions and the underlying molecular mechanisms of m6A RNA methylation, its regulators and downstream target genes, during cancer progression in above systems. We propose that m6A RNA methylation process offer potential targets for cancer therapy in the future.


2004 ◽  
Vol 18 (8) ◽  
pp. 2035-2048 ◽  
Author(s):  
Bukhtiar H. Shah ◽  
Akin Yesilkaya ◽  
J. Alberto Olivares-Reyes ◽  
Hung-Dar Chen ◽  
László Hunyady ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-19 ◽  
Author(s):  
Norahayu Othman ◽  
Noor Hasima Nagoor

Lung cancer remains to be one of the most common and serious types of cancer worldwide. While treatment is available, the survival rate of this cancer is still critically low due to late stage diagnosis and high frequency of drug resistance, thus highlighting the pressing need for a greater understanding of the molecular mechanisms involved in lung carcinogenesis. Studies in the past years have evidenced that microRNAs (miRNAs) are critical players in the regulation of various biological functions, including apoptosis, which is a process frequently evaded in cancer progression. Recently, miRNAs were demonstrated to possess proapoptotic or antiapoptotic abilities through the targeting of oncogenes or tumor suppressor genes. This review examines the involvement of miRNAs in the apoptotic process of lung cancer and will also touch on the promising evidence supporting the role of miRNAs in regulating sensitivity to anticancer treatment.


Sign in / Sign up

Export Citation Format

Share Document