scholarly journals Ability of Carotid Corrected Flow Time to Predict Fluid Responsiveness in Patients Mechanically Ventilated Using Low Tidal Volume after Surgery

2021 ◽  
Vol 10 (12) ◽  
pp. 2676
Author(s):  
Seungho Jung ◽  
Jeongmin Kim ◽  
Sungwon Na ◽  
Won Seok Nam ◽  
Do-Hyeong Kim

Predicting fluid responsiveness in patients under mechanical ventilation with low tidal volume (VT) is challenging. This study evaluated the ability of carotid corrected flow time (FTc) assessed by ultrasound for predicting the fluid responsiveness during low VT ventilation. Patients under postoperative mechanical ventilation and clinically diagnosed with hypovolemia were enrolled. Carotid FTc and pulse pressure variation (PPV) were measured at VT of 6 and 10 mL/kg predicted body weight (PBW). FTc was calculated using both Bazett’s (FTcB) and Wodey’s (FTcW) formulas. Fluid responsiveness was defined as a ≥15% increase in the stroke volume index assessed by FloTrac/Vigileo monitor after administration of 8 mL/kg of balanced crystalloid. Among 36 patients, 16 (44.4%) were fluid responders. The areas under the receiver operating characteristic curves (AUROCs) for the FTcB at VT of 6 and 10 mL/kg PBW were 0.897 (95% confidence interval [95% CI]: 0.750–0.973) and 0.895 (95% CI: 0.748–0.972), respectively. The AUROCs for the FTcW at VT of 6 and 10 mL/kg PBW were 0.875 (95% CI: 0.722–0.961) and 0.891 (95% CI: 0.744–0.970), respectively. However, PPV at VT of 6 mL/kg PBW (AUROC: 0.714, 95% CI: 0.539–0.852) showed significantly lower accuracy than that of PPV at VT of 10 mL/kg PBW (AUROC: 0.867, 95% CI: 0.712–0.957; p = 0.034). Carotid FTc can predict fluid responsiveness better than PPV during low VT ventilation. However, further studies using automated continuous monitoring system are needed before its clinical use.

2018 ◽  
Vol 46 (11) ◽  
pp. e1040-e1046 ◽  
Author(s):  
Igor Barjaktarevic ◽  
William E. Toppen ◽  
Scott Hu ◽  
Elizabeth Aquije Montoya ◽  
Stephanie Ong ◽  
...  

2007 ◽  
Vol 99 (3) ◽  
pp. 343-348 ◽  
Author(s):  
J-H. Lee ◽  
J-T. Kim ◽  
S.Z. Yoon ◽  
Y-J. Lim ◽  
Y. Jeon ◽  
...  

Author(s):  
Jorge Iván Alvarado Sánchez ◽  
Juan Daniel Caicedo Ruiz ◽  
Juan José Diaztagle Fernández ◽  
Gustavo Adolfo Ospina-Tascón ◽  
Luis Eduardo Cruz Martínez

Introduction: Pulse pressure variation (PPV) has been shown to be useful to predict fluid responsiveness in patients ventilated at tidal volume (Vt) >8 mL kg−1. Nevertheless, most conditions in critical care force to use lower Vt. Thus, we sought to evaluate the operative performance of PPV when a Vt ⩽8 mL kg−1 is used during mechanical ventilation support. Methods: We searched PubMed and Embase databases for articles evaluating the operative performance of PPV as a predictor of fluid responsiveness in critical care and perioperative adult patients ventilated with tidal volume ⩽8 mL kg−1 without respiratory effort and arrhythmias, between January 1990 and January 2019. We included cohort and cross-sectional studies. Two authors performed an Independently selection using predefined terms of search. The fitted data of sensitivity, specificity, and area under the curve (AUC) were assessed by bivariate and hierarchical analyses. Results: We retrieved 19 trials with a total of 777 patients and a total of 935 fluid challenges. The fitted sensitivity of PPV to predict fluid responsiveness during mechanical ventilation at Vt ⩽8 mL kg−1 was 0.65 (95% confidence interval [CI]: 0.57-0.73), the specificity was 0.79 (95% CI: 0.73-0.84), and the AUC was 0.75. The diagnostic odds ratio was 5.5 (95% CI: 3.08-10.01, P < .001) by the random-effects model. Conclusions: Pulse pressure variation shows a fair operative performance as a predictor of fluid responsiveness in critical care and perioperative patients ventilated with a tidal volume ⩽8 mL kg−1 without respiratory effort and arrhythmias.


2019 ◽  
Author(s):  
Pimsai Kunakorn ◽  
Sunthiti Morakul ◽  
Tananchai Petnak ◽  
Pongsasit Singhatat ◽  
Chawika Pisitsak

Abstract Background: Lung protective ventilation with low tidal volume is beneficial in patients with intermediate to high risk of postoperative pulmonary complications. However, during low tidal volume ventilation, pulse pressure variation (PPV) and stroke volume variation (SVV) do not predict fluid responsiveness. We aimed to determine whether changes in PPV and SVV after transient increases in tidal volume can predict fluid responsiveness in these patients. Methods: We recorded 22 measurements from 15 patients who experienced postoperative acute circulatory failure. We performed a tidal volume challenge by transiently increasing tidal volume (VT) from 6 to 8 mL/kg (VT6–8), 8 to 10 mL/kg (VT8–10), and 6 to 10 mL/kg (VT6–10) of patients' predicted body weight. The change in PPV (∆PPV) at VT6–8 (∆PPV6–8), VT8–10 (∆PPV8–10), VT6–10 (∆PPV6–10) and the change in SVV (∆SVV) at VT6–8 (∆SVV6–8), VT8–10 (∆SVV8–10), and VT6–10 (∆SVV6–10) were recorded. Patients were classified as fluid responders if there was an increase in stroke volume of more than 10% after a fluid bolus. Results: Following the tidal volume challenge, ∆PPV and ∆SVV failed to predict fluid responsiveness, with areas under the receiver operating characteristic curves (with 95% confidence intervals) of 0.49 (0.23–0.74), 0.54 (0.29–0.79), 0.52 (0.28–0.77) for ∆PPV6–8, ∆PPV8–10, and ∆PPV6–10, and 0.55 (0.30–0.80), 0.55 (0.31–0.80), and 0.59 (0.34–0.84) for ∆SVV6–8, ∆SVV8–10, and ∆SVV6–10, respectively. Conclusions: Changes in PPV and SVV after the tidal volume challenge did not predict fluid responsiveness in postoperative patients with low tidal volume ventilation. Trial registration: This trial was registered with Clinicaltrials.in.th, TCTR20190808003.


Sign in / Sign up

Export Citation Format

Share Document