scholarly journals Cardiac and Vascular Sympathetic Baroreflex Control during Orthostatic Pre-Syncope

2019 ◽  
Vol 8 (9) ◽  
pp. 1434 ◽  
Author(s):  
Furlan ◽  
Heusser ◽  
Minonzio ◽  
Shiffer ◽  
Cairo ◽  
...  

We hypothesized that sympathetic baroreflex mediated uncoupling between neural sympathetic discharge pattern and arterial pressure (AP) fluctuations at 0.1 Hz during baroreceptor unloading might promote orthostatic pre-syncope. Ten volunteers (32 ± 6 years) underwent electrocardiogram, beat-to-beat AP, respiratory activity and muscle sympathetic nerve activity (MSNA) recordings while supine (REST) and during 80° head-up tilt (HUT) followed by -10 mmHg stepwise increase of lower body negative pressure until pre-syncope. Cardiac and sympathetic baroreflex sensitivity were quantified. Spectrum analysis of systolic and diastolic AP (SAP and DAP) and calibrated MSNA (cMSNA) variability assessed the low frequency fluctuations (LF, ~0.1 Hz) of SAP, DAP and cMSNA variability. The squared coherence function (K2) quantified the coupling between cMSNA and DAP in the LF band. Analyses were performed while supine, during asymptomatic HUT (T1) and at pre-syncope onset (T2). During T2 we found that: (1) sympathetic baroreceptor modulation was virtually abolished compared to T1; (2) a progressive decrease in AP was accompanied by a persistent but chaotic sympathetic firing; (3) coupling between cMSNA and AP series at 0.1 Hz was reduced compared to T1. A negligible sympathetic baroreceptor modulation during pre-syncope might disrupt sympathetic discharge pattern impairing the capability of vessels to constrict and promote pre-syncope.

2015 ◽  
Vol 309 (7) ◽  
pp. H1218-H1224 ◽  
Author(s):  
Fatima El-Hamad ◽  
Elisabeth Lambert ◽  
Derek Abbott ◽  
Mathias Baumert

Beat-to-beat variability of the QT interval (QTV) is sought to provide an indirect noninvasive measure of sympathetic nerve activity, but a formal quantification of this relationship has not been provided. In this study we used power contribution analysis to study the relationship between QTV and muscle sympathetic nerve activity (MSNA). ECG and MSNA were recorded in 10 healthy subjects in the supine position and after 40° head-up tilt. Power spectrum analysis was performed using a linear autoregressive model with two external inputs: heart period (RR interval) variability (RRV) and MSNA. Total and low-frequency power of QTV was decomposed into contributions by RRV, MSNA, and sources independent of RRV and MSNA. Results show that the percentage of MSNA power contribution to QT is very small and does not change with tilt. RRV power contribution to QT power is notable and decreases with tilt, while the greatest percentage of QTV is independent of RRV and MSNA in the supine position and after 40° head-up tilt. In conclusion, beat-to-beat QTV in normal subjects does not appear to be significantly affected by the rhythmic modulations in MSNA following low to moderate orthostatic stimulation. Therefore, MSNA oscillations may not represent a useful surrogate for cardiac sympathetic nerve activity at moderate levels of activation, or, alternatively, sympathetic influences on QTV are complex and not quantifiable with linear shift-invariant autoregressive models.


2004 ◽  
Vol 96 (6) ◽  
pp. 2333-2340 ◽  
Author(s):  
Tomi Laitinen ◽  
Leo Niskanen ◽  
Ghislaine Geelen ◽  
Esko Länsimies ◽  
Juha Hartikainen

In elderly subjects, heart rate responses to postural change are attenuated, whereas their vascular responses are augmented. Altered strategy in maintaining blood pressure homeostasis during upright position may result from various cardiovascular changes, including age-related cardiovascular autonomic dysfunction. This exploratory study was conducted to evaluate impact of age on cardiovascular autonomic responses to head-up tilt (HUT) in healthy subjects covering a wide age range. The study population consisted of 63 healthy, normal-weight, nonsmoking subjects aged 23–77 yr. Five-minute electrocardiogram and finger blood pressure recordings were performed in the supine position and in the upright position 5 min after 70° HUT. Stroke volume was assessed from noninvasive blood pressure signals by the arterial pulse contour method. Heart rate variability (HRV) and systolic blood pressure variability (SBPV) were analyzed by using spectral analysis, and baroreflex sensitivity (BRS) was assessed by using sequence and cross-spectral methods. Cardiovascular autonomic activation during HUT consisted of decreases in HRV and BRS and an increase in SBPV. These changes became attenuated with aging. Age correlated significantly with amplitude of HUT-stimulated response of the high-frequency component ( r = -0.61, P < 0.001) and the ratio of low-frequency to high-frequency power of HRV ( r = -0.31, P < 0.05) and indexes of BRS (local BRS: r = -0.62, P < 0.001; cross-spectral baroreflex sensitivity in the low-frequency range: r = -0.38, P < 0.01). Blood pressure in the upright position was maintained well irrespective of age. However, the HUT-induced increase in heart rate was more pronounced in the younger subjects, whereas the increase in peripheral resistance was predominantly observed in the older subjects. Thus it is likely that whereas the dynamic capacity of cardiac autonomic regulation decreases, vascular responses related to vasoactive mechanisms and vascular sympathetic regulation become augmented with increasing age.


2005 ◽  
Vol 83 (5) ◽  
pp. 439-446 ◽  
Author(s):  
Deborah D O'Leary ◽  
Craig D Steinback ◽  
Angela D Cechetto ◽  
Blaine T Foell ◽  
Jane C Topolovec ◽  
...  

Previous evidence indicates that sensitivity of the baroreflex cardiovagal and sympathetic arms is dissociated. In addition, pharmacologic assessment of baroreflex sensitivity (BRS) has revealed that cardiovagal, but not sympathetic, BRS is greater when blood pressure is increasing versus falling. The origin of this hysteresis is unknown. In this study, carotid artery distensibility and absolute distension (diameter) were assessed to test the hypothesis that vessel mechanics in barosensitive regions affect the BRS of cardiovagal, but not sympathetic, outflow. R-R interval (i.e. time between successive R waves), finger arterial blood pressure, muscle sympathetic nerve activity, and carotid artery dimensions (B-mode imaging) were measured during sequential infusions of sodium nitroprusside (SNP) and phenylephrine (PHE). Systolic and diastolic common carotid artery diameters and pulse pressure were recorded to calculate distensibility of this vessel under each drug condition. Cardiovagal BRS was greater when blood pressure was increasing versus decreasing (p < 0.01). Sympathetic BRS was not affected by direction of pressure change. Distensibility did not differ between SNP and PHE injections. However, compared with SNP, infusion of PHE resulted in larger absolute systolic and diastolic carotid diameters (p < 0.001). Therefore, cardiovagal reflex hysteresis was related to drug-induced changes in common carotid artery diameter but not distensibility. The lack of sympathetic hysteresis in this model suggests a relative insensitivity of this baroreflex component to carotid artery dimensions and provides a possible mechanism for the dissociation between cardiovagal and sympathetic BRS.Key words: Oxford method, baroreflex hysteresis, cardiovagal, MSNA, distensibility.


1987 ◽  
Vol 63 (6) ◽  
pp. 2558-2562 ◽  
Author(s):  
R. G. Victor ◽  
W. N. Leimbach

Recent studies indicate that nonhypotensive orthostatic stress in humans causes reflex vasoconstriction in the forearm but not in the calf. We used microelectrode recordings of muscle sympathetic nerve activity (MSNA) from the peroneal nerve in conscious humans to determine if unloading of cardiac baroreceptors during nonhypotensive lower body negative pressure (LBNP) increases sympathetic discharge to the leg muscles. LBNP from -5 to -15 mmHg had no effect on arterial pressure or heart rate but caused graded decreases in central venous pressure and corresponding large increases in peroneal MSNA. Total MSNA (burst frequency X mean burst amplitude) increased by 61 +/- 22% (P less than 0.05 vs. control) during LBNP at only -5 mmHg and rose progressively to a value that was 149 +/- 29% greater than control during LBNP at -15 mmHg (P less than 0.05). The major new conclusion is that nonhypotensive LBNP is a potent stimulus to muscle sympathetic outflow in the leg as well as the arm. During orthostatic stress in humans, the cardiac baroreflex appears to trigger a mass sympathetic discharge to the skeletal muscles in all of the extremities.


2016 ◽  
Vol 310 (11) ◽  
pp. R1134-R1143 ◽  
Author(s):  
Andrea Marchi ◽  
Vlasta Bari ◽  
Beatrice De Maria ◽  
Murray Esler ◽  
Elisabeth Lambert ◽  
...  

Muscle sympathetic nerve activity (MSNA) variability is traditionally computed through a low-pass filtering procedure that requires normalization. We proposed a new beat-to-beat MSNA variability computation that preserves dimensionality typical of an integrated neural discharge (i.e., bursts per unit of time). The calibrated MSNA (cMSNA) variability technique is contrasted with the traditional uncalibrated MSNA (ucMSNA) version. The powers of cMSNA and ucMSNA variabilities in the low-frequency (LF, from 0.04 to 0.15 Hz) band were computed with those of the heart period (HP) of systolic and diastolic arterial pressure (SAP and DAP, respectively) in seven healthy subjects (age, 20–28 years; median, 22 years; 5 women) during a graded head-up tilt. Subjects were sequentially tilted at 0°, 20°, 30°, 40°, and 60° table inclinations. The LF powers of ucMSNA and HP variabilities were expressed in normalized units (LFnu), whereas all remaining spectral markers were expressed in absolute units. We found that 1) the LF power of cMSNA variability was positively correlated with tilt angle, whereas the LFnu power of the ucMSNA series was uncorrelated; 2) the LF power of cMSNA variability was correlated with LF powers of SAP and DAP, LFnu power of HP and noradrenaline concentration, whereas the relationship of the LFnu power of ucMSNA variability to LF powers of SAP and DAP was weaker and that to LFnu power of HP was absent; and 3) the stronger relationship of cMSNA variability to SAP and DAP spectral markers compared with the ucMSNA series was confirmed individually. The cMSNA variability appears to be more suitable in describing sympathetic control in humans than traditional ucMSNA variability.


2018 ◽  
Vol 124 (3) ◽  
pp. 791-804 ◽  
Author(s):  
Juliana C. Milan-Mattos ◽  
Alberto Porta ◽  
Natália M. Perseguini ◽  
Vinicius Minatel ◽  
Patricia Rehder-Santos ◽  
...  

Aging affects baroreflex regulation. The effect of senescence on baroreflex control was assessed from spontaneous fluctuations of heart period (HP) and systolic arterial pressure (SAP) through the HP-SAP gain, while the HP-SAP phase and strength are usually disregarded. This study checks whether the HP-SAP phase and strength, as estimated, respectively, via the phase of the HP-SAP cross spectrum (PhHP-SAP) and squared coherence function (K2HP-SAP), vary with age in healthy individuals and trends are gender-dependent. We evaluated 110 healthy volunteers (55 males) divided into five age subgroups (21–30, 31–40, 41–50, 51–60, and 61–70 yr). Each subgroup was formed by 22 subjects (11 males). HP series was extracted from electrocardiogram and SAP from finger arterial pressure at supine resting (REST) and during active standing (STAND). PhHP-SAP and K2HP-SAP functions were sampled in low-frequency (LF, from 0.04 to 0.15 Hz) and in high-frequency (HF, above 0.15 Hz) bands. Both at REST and during STAND PhHP-SAP(LF) showed a negative correlation with age regardless of gender even though values were more negative in women. This trend was shown to be compatible with a progressive increase of the baroreflex latency with age. At REST K2HP-SAP(LF) decreased with age regardless of gender, but during STAND the high values of K2HP-SAP(LF) were more preserved in men than women. At REST and during STAND the association of PhHP-SAP(HF) and K2HP-SAP(HF) with age was absent. The findings points to a greater instability of baroreflex control with age that seems to affect to a greater extent women than men. NEW & NOTEWORTHY Aging increases cardiac baroreflex latency and decreases the degree of cardiac baroreflex involvement in regulating cardiovascular variables. These trends are gender independent but lead to longer delays and asmaller degree of cardiac baroreflex involvement in women than in men, especially during active standing, with important implications on the tolerance to an orthostatic stressor.


2008 ◽  
Vol 294 (1) ◽  
pp. R142-R150 ◽  
Author(s):  
Dominique Laude ◽  
Véronique Baudrie ◽  
Jean-Luc Elghozi

Short-term blood pressure (BP) variability is limited by the arterial baroreflex. Methods for measuring the spontaneous baroreflex sensitivity (BRS) aim to quantify the gain of the transfer function between BP and pulse interval (PI) or the slope of the linear relationship between parallel BP and PI changes. These frequency-domain (spectral) and time-domain (sequence) techniques were tested in conscious mice equipped with telemetric devices. The autonomic relevance of these indexes was evaluated using pharmacological blockades. The significant changes of the spectral bandwidths resulting from the autonomic blockades were used to identify the low-frequency (LF) and high-frequency (HF) zones of interest. The LF gain was 1.45 ± 0.14 ms/mmHg, with a PI delay of 0.5 s. For the HF gain, the average values were 2.0 ± 0.19 ms/mmHg, with a null phase. LF and HF bands were markedly affected by atropine. On the same 51.2-s segments used for cross-spectral analysis, an average number of 26.4 ± 2.2 slopes were detected, and the average slope in resting mice was 4.4 ± 0.5 ms/mmHg. Atropine significantly reduced the slopes of the sequence method. BRS measurements obtained using the sequence technique were highly correlated to the spectral estimates. This study demonstrates the applicability of the recent methods used to estimate spontaneous BRS in mice. There was a vagal predominance in the baroreflex control of heart rate in conscious mice in the present conditions.


2000 ◽  
Vol 278 (2) ◽  
pp. R445-R452 ◽  
Author(s):  
Atsunori Kamiya ◽  
Satoshi Iwase ◽  
Hiroki Kitazawa ◽  
Tadaaki Mano ◽  
Olga L. Vinogradova ◽  
...  

To examine how long-lasting microgravity simulated by 6° head-down bed rest (HDBR) induces changes in the baroreflex control of muscle sympathetic nerve activity (MSNA) at rest and changes in responses of MSNA to orthostasis, six healthy male volunteers (range 26–42 yr) participated in Valsalva maneuver and head-up tilt (HUT) tests before and after 120 days of HDBR. MSNA was measured directly using a microneurographic technique. After long-term HDBR, resting supine MSNA and heart rate were augmented. The baroreflex slopes for MSNA during Valsalva maneuver (in supine position) and during 60° HUT test, determined by least-squares linear regression analysis, were significantly steeper after than before HDBR, whereas the baroreflex slopes for R-R interval were significantly flatter after HDBR. The increase in MSNA from supine to 60° HUT was not different between before and after HDBR, but mean blood pressure decreased in 60° HUT after HDBR. In conclusion, the baroreflex control of MSNA was augmented, whereas the same reflex control of R-R interval was attenuated after 120 days of HDBR.


2000 ◽  
Vol 279 (2) ◽  
pp. H536-H541 ◽  
Author(s):  
Philippe Van de Borne ◽  
Silvia Mezzetti ◽  
Nicola Montano ◽  
Krzysztof Narkiewicz ◽  
Jean Paul Degaute ◽  
...  

Interactions between mechanisms governing ventilation and blood pressure (BP) are not well understood. We studied in 11 resting normal subjects the effects of sustained isocapnic hyperventilation on arterial baroreceptor sensitivity, determined as the α index between oscillations in systolic BP (SBP) generated by respiration and oscillations present in R-R intervals (RR) and in peripheral sympathetic nerve traffic [muscle sympathetic nerve activity (MSNA)]. Tidal volume increased from 478 ± 24 to 1,499 ± 84 ml and raised SBP from 118 ± 2 to 125 ± 3 mmHg, whereas RR decreased from 947 ± 18 to 855 ± 11 ms (all P < 0.0001); MSNA did not change. Hyperventilation reduced arterial baroreflex sensitivity to oscillations in SBP at both cardiac (from 13 ± 1 to 9 ± 1 ms/mmHg, P < 0.001) and MSNA levels (by −37 ± 5%, P < 0.0001). Thus increased BP during hyperventilation does not elicit any reduction in either heart rate or MSNA. Baroreflex modulation of RR and MSNA in response to hyperventilation-induced BP oscillations is attenuated. Blunted baroreflex gain during hyperventilation may be a mechanism that facilitates simultaneous increases in BP, heart rate, and sympathetic activity during dynamic exercise and chemoreceptor activation.


2007 ◽  
Vol 292 (1) ◽  
pp. H190-H197 ◽  
Author(s):  
Kevin D. Monahan ◽  
Urs A. Leuenberger ◽  
Chester A. Ray

Animal studies suggest that acute and chronic aldosterone administration impairs baroreceptor/baroreflex responses. We tested the hypothesis that aldosterone impairs baroreflex control of cardiac period [cardiovagal baroreflex sensitivity (BRS)] and muscle sympathetic nerve activity (MSNA, sympathetic BRS) in humans. Twenty-six young (25 ± 1 yr old, mean ± SE) adults were examined in this study. BRS was determined by using the modified Oxford technique (bolus infusion of nitroprusside, followed 60 s later by bolus infusion of phenylephrine) in triplicate before (Pre) and 30-min after (Post) beginning aldosterone (experimental, 12 pmol·kg−1·min−1; n = 10 subjects) or saline infusion (control; n = 10). BRS was quantified from the R-R interval-systolic blood pressure (BP) (cardiovagal BRS) and MSNA-diastolic BP (sympathetic BRS) relations. Aldosterone infusion increased serum aldosterone levels approximately fourfold ( P < 0.05) and decreased ( P < 0.05) cardiovagal (19.0 ± 2.3 vs. 15.6 ± 1.7 ms/mmHg Pre and Post, respectively) and sympathetic BRS [−4.4 ± 0.4 vs. −3.0 ± 0.4 arbitrary units (AU)·beat−1·mmHg−1]. In contrast, neither cardiovagal (19.3 ± 3.3 vs. 20.2 ± 3.3 ms/mmHg) nor sympathetic BRS (−3.8 ± 0.5 vs. −3.6 ± 0.5 AU·beat−1·mmHg−1) were altered (Pre vs. Post) in the control group. BP, heart rate, and MSNA at rest were similar in experimental and control subjects before and after the intervention. Additionally, neural and cardiovascular responses to a cold pressor test and isometric handgrip to fatigue were unaffected by aldosterone infusion ( n = 6 subjects). These data provide direct experimental support for the concept that aldosterone impairs baroreflex function (cardiovagal and sympathetic BRS) in humans. Therefore, aldosterone may be an important determinant/modulator of baroreflex function in humans.


Sign in / Sign up

Export Citation Format

Share Document