scholarly journals Cavitation on Model- and Full-Scale Marine Propellers: Steady And Transient Viscous Flow Simulations At Different Reynolds Numbers

2020 ◽  
Vol 8 (2) ◽  
pp. 141 ◽  
Author(s):  
Ville Viitanen ◽  
Timo Siikonen ◽  
Antonio Sánchez-Caja

In this paper, we conducted numerical simulations to investigate single and two-phase flows around marine propellers in open-water conditions at different Reynolds number regimes. The simulations were carried out using a homogeneous compressible two-phase flow model with RANS and hybrid RANS/LES turbulence modeling approaches. Transition was accounted for in the model-scale simulations by employing an LCTM transition model. In model scale, also an anisotropic RANS model was utilized. We investigated two types of marine propellers: a conventional and a tip-loaded one. We compared the results of the simulations to experimental results in terms of global propeller performance and cavitation observations. The propeller cavitation, near-blade flow phenomena, and propeller wake flow characteristics were investigated in model- and full-scale conditions. A grid and time step sensitivity studies were carried out with respect to the propeller performance and cavitation characteristics. The model-scale propeller performance and the cavitation patterns were captured well with the numerical simulations, with little difference between the utilized turbulence models. The global propeller performance and the cavitation patterns were similar between the model- and full-scale simulations. A tendency of increased cavitation extent was observed as the Reynolds number increases. At the same time, greater dissipation of the cavitating tip vortex was noted in the full-scale conditions.

Author(s):  
Charles Lefevre ◽  
Yiannis Constantinides ◽  
Jang Whan Kim ◽  
Mike Henneke ◽  
Robert Gordon ◽  
...  

Vortex-Induced Motion (VIM), which occurs as a consequence of exposure to strong current such as Loop Current eddies in the Gulf of Mexico, is one of the critical factors in the design of the mooring and riser systems for deepwater offshore structures such as Spars and multi-column Deep Draft Floaters (DDFs). The VIM response can have a significant impact on the fatigue life of mooring and riser components. In particular, Steel Catenary Risers (SCRs) suspended from the floater can be sensitive to VIM-induced fatigue at their mudline touchdown points. Industry currently relies on scaled model testing to determine VIM for design. However, scaled model tests are limited in their ability to represent VIM for the full scale structure since they are generally not able to represent the full scale Reynolds number and also cannot fully represent waves effects, nonlinear mooring system behavior or sheared and unsteady currents. The use of Computational Fluid Dynamics (CFD) to simulate VIM can more realistically represent the full scale Reynolds number, waves effects, mooring system, and ocean currents than scaled physical model tests. This paper describes a set of VIM CFD simulations for a Spar hard tank with appurtenances and their comparison against a high quality scaled model test. The test data showed considerable sensitivity to heading angle relative to the incident flow as well as to reduced velocity. The simulated VIM-induced sway motion was compared against the model test data for different reduced velocities (Vm) and Spar headings. Agreement between CFD and model test VIM-induced sway motion was within 9% over the full range of Vm and headings. Use of the Improved Delayed Detached Eddy Simulation (IDDES, Shur et al 2008) turbulence model gives the best agreement with the model test measurements. Guidelines are provided for meshing and time step/solver setting selection.


2020 ◽  
Vol 8 (10) ◽  
pp. 786
Author(s):  
S. Polyzos ◽  
G. Tzabiras

The present work describes a simplified Computational Fluid Dynamics (CFD) approach in order to calculate the propulsive performance of a ship moving at steady forward speed in head seas. The proposed method combines experimental data concerning the added resistance at model scale with full scale Reynolds Averages Navier–Stokes (RANS) computations, using an in-house solver. In order to simulate the propeller performance, the actuator disk concept is employed. The propeller thrust is calculated in the time domain, assuming that the total resistance of the ship is the sum of the still water resistance and the added component derived by the towing tank data. The unsteady RANS equations are solved until self-propulsion is achieved at a given time step. Then, the computed values of both the flow rate through the propeller and the thrust are stored and, after the end of the examined time period, they are processed for calculating the variation of Shaft Horsepower (SHP) and RPM of the ship’s engine. The method is applied for a bulk carrier which has been tested in model scale at the towing tank of the Laboratory for Ship and Marine Hydrodynamics (LSMH) of the National Technical University of Athens (NTUA).


2009 ◽  
Vol 131 (7) ◽  
Author(s):  
Young T. Shen ◽  
Scott Gowing ◽  
Stuart Jessup

Tip vortices generated by marine lifting surfaces such as propeller blades, ship rudders, hydrofoil wings, and antiroll fins can lead to cavitation. Prediction of the onset of this cavitation depends on model tests at Reynolds numbers much lower than those for the corresponding full-scale flows. The effect of Reynolds number variations on the scaling of tip vortex cavitation inception is investigated using a theoretical flow similarity approach. The ratio of the circulations in the full-scale and model-scale trailing vortices is obtained by assuming that the spanwise distributions of the section lift coefficients are the same between the model-scale and the full-scale. The vortex pressure distributions and core sizes are derived using the Rankine vortex model and McCormick’s assumption about the dependence of the vortex core size on the boundary layer thickness at the tip region. Using a logarithmic law to describe the velocity profile in the boundary layer over a large range of Reynolds number, the boundary layer thickness becomes dependent on the Reynolds number to a varying power. In deriving the scaling of the cavitation inception index as the ratio of Reynolds numbers to an exponent m, the values of m are not constant and are dependent on the values of the model- and full-scale Reynolds numbers themselves. This contrasts traditional scaling for which m is treated as a fixed value that is independent of Reynolds numbers. At very high Reynolds numbers, the present theory predicts the value of m to approach zero, consistent with the trend of these flows to become inviscid. Comparison of the present theory with available experimental data shows promising results, especially with recent results from high Reynolds number tests. Numerical examples of the values of m are given for different model- to full-scale sizes and Reynolds numbers.


Author(s):  
Ivaylo Nedyalkov ◽  
Ian Gagnon ◽  
Jesse Shull ◽  
John Brindley ◽  
Martin Wosnik

Wingtip devices are common in aeronautical applications and are increasingly used on wind turbines. However, their use in hydrokinetic energy conversion applications such as tidal turbines to date is minimal, due to the concern for increased bio-fouling and also the fact that there is little or no data publically available describing their cavitation characteristics. In this study, three wingtip designs were considered for hydrokinetic turbine applications: a plain foil with a rounded tip (considered the reference case), a generic wingtip device (a winglet), and a novel “split-tip” device. The tips were studied numerically and experimentally at different angles of attack. The numerical simulations were performed in OpenFOAM using the k-omega SST model to predict the lift and drag characteristics of a “base” foil with each of the three wingtip devices. Additionally the pressure and vorticity were observed. Experiments were conducted in the University of New Hampshire High-Speed Cavitation Tunnel – HiCaT. A modular experimental test bed with an elliptical foil section was developed specifically for the study. The test bed extends to the centerline of the tunnel where wingtips are attached, and has four small-diameter tube openings to accommodate pressure measurements and/or mass injection studies. Water tunnel data were obtained for lift, and cavitation inception, and compared to the numerical simulations. The numerical results show decreased vorticity with presence of the wingtip devices, however, the advantage of using wingtips for decreasing drag and increasing lift forces is not conclusively exhibited. The experimental measurements suggest that there is a significant suppression of tip vortex cavitation with the use of wingtip devices at high angles of attack (around 10 degrees), but the advantage of using the wingtip devices diminishes at lower angles of attack. It was shown by Arndt [1] that tip-vortex cavitation on hydrofoils can be related to the lift coefficient and the Reynolds number, where the cavitation index at inception is proportional to the square of the section lift coefficient and the Reynolds number based on hydrofoil chord, taken to the power m. The power exponent m has been generally accepted to be approximately 0.4. This relation is made into an equation via a coefficient of proportionality K, which depends on the wingtip and foil section geometry, and has been empirically determined to have values between 0.025 and 0.056 for previously investigated wings. While the value of the coefficient K for the reference wing tip remained comparatively constant for the range of conditions investigated (angles of attack, Reynolds numbers), it varied significantly for the foil terminated by the winglet. This may be due to the non-elliptical load distribution in the span-wise direction, but also raises the question whether the standard tip-vortex cavitation correlation for hydrofoils is applicable for general wingtip devices.


Author(s):  
Young T. Shen ◽  
Stuart Jessup ◽  
Scott Gowing

Tip vortices that are generated by marine lifting surfaces such as propeller blades, ship rudders, hydrofoil wings, and anti-roll fins can lead to cavitation. Prediction of the onset of this cavitation depends on model tests at Reynolds numbers much lower than those for the corresponding full-scale flows. The effect of Reynolds number variations on the scaling of tip vortex cavitation inception is investigated using a theoretical flow similarity approach. The ratio of the circulations in the full-scale and model-scale trailing vortices is obtained by assuming that the spanwise section lift coefficient distributions are the same between model and full-scale. The vortex pressure distributions and core sizes are derived using the Rankine vortex model and McCormick’s assumption about the dependence of the vortex core size on the boundary layer thickness at the tip region. Using a logarithmic law to describe the velocity profile in the boundary layer over a large range of Reynolds number, the boundary layer thickness becomes dependent on the Reynolds number to a varying power. In deriving the cavitation inception scaling in the traditional scaling format of σif / σim = (Ref/Rem)n, the values of n are not constant and depend on the values of Ref and Rem themselves. This contrasts traditional scaling for which n is treated as a fixed value that is independent of Reynolds numbers. At very high Reynolds numbers, the present theory predicts the value of n to approach zero, consistent with the trend of these flows to become inviscid. Comparison of the present theory with available experimental data shows promising results, especially with recent results from high Reynolds number tests. Numerical examples are given of the values of n for different model to full-scale sizes and Reynolds numbers.


1977 ◽  
Vol 14 (04) ◽  
pp. 391-409
Author(s):  
P. van Oossanen

One of the consequences of cavitation on marine propellers is the risk of damage to the propeller in the form of erosion and bent trailing edges. Other detrimental effects of cavitation are the large amplifications of vibration-exciting hull forces and the emitted noise. These problems associated with propeller cavitation have become matters of great concern. In this paper a method is described for the assessment of cavitation inception and for the calculation of the type and extent of cavitation on marine propellers. The adopted theory is suitable for application to nonuniform flows such as exist behind ships. Some primary effects associated with viscosity are also included, in particular the problem of Reynolds number scaling such as occurs when testing models in cavitation test facilities at speeds lower than at full scale. It is shown that the described theory leads to reasonable correlations with actual cavitation patterns for lightly and moderately loaded propellers. For heavily loaded propellers such as those of tankers and tugs, the calculated results are less satisfactory. The argument is made that this is due to the lack of knowledge regarding the change in the wake flow into the propeller due to the propeller load. For minimizing the occurrence of cavitation in subcavitating propeller design, long-standing experience in both the design and testing of propellers in cavitation test facilities is normally required. With the use of the described theory, however, it is possible, by systematically varying design parameters, to arrive at a successful design in a straightforward manner.


Author(s):  
Arjen Koop

When two vessels are positioned close to each other in a current, significant shielding or interaction effects can be observed. In this paper the current loads are determined for a LNG carrier alone, a Shuttle tanker alone and both vessels in side-by-side configuration. The current loads are determined by means of tow tests in a water basin at scale 1:60 and by CFD calculations at model-scale and full-scale Reynolds number. The objective of the measurements was to obtain reference data including shielding effects. CFD calculations at model-scale Reynolds number are carried out and compared with the model test results to determine the capability of CFD to predict the side-by-side current load coefficients. Furthermore, CFD calculations at full-scale Reynolds number are performed to determine the scale effects on current loads. We estimate that the experimental uncertainty ranges between 3% and 5% for the force coefficients CY and CMZ and between 3% and 10% for CX. Based on a grid sensitivity study the numerical sensitivity is estimated to be below 5%. Considering the uncertainties mentioned above, we assume that a good agreement between experiments and CFD calculations is obtained when the difference is within 10%. The best agreement between the model test results and the CFD results for model-scale Reynolds number is obtained for the CY coefficient with differences around 5%. For the CX coefficient the difference can be larger as this coefficient is mainly dominated by the friction component. In the model tests this force is small and therefore difficult to measure. In the CFD calculations the turbulence model used may not be suitable to capture transition from laminar to turbulent flow. A good agreement (around 5% difference) is obtained for the moment coefficient for headings without shielding effects. With shielding effects larger differences can be obtained as for these headings a slight deviation in the wake behind the upstream vessel may result in a large difference for the moment coefficient. Comparing the CFD results at full-scale Reynolds number with the CFD results at model-scale Reynolds number significant differences are found for friction dominated forces. For the CX coefficient a reduction up to 50% can be observed at full-scale Reynolds number. The differences for pressure dominated forces are smaller. For the CY coefficient 5–10% lower values are obtained at full-scale Reynolds number. The moment coefficient CMZ is also dominated by the pressure force, but up to 30% lower values are found at full-scale Reynolds number. The shielding effects appear to be slightly smaller at full-scale Reynolds number as the wake from the upstream vessel is slightly smaller in size resulting in larger forces on the downstream vessel.


Author(s):  
Maarten Kerkvliet ◽  
Guilherme Vaz ◽  
Nicolas Carette ◽  
Michiel Gunsing

The roll motion of ships operating in a seaway is often limiting operations. These limits could be due to, e.g. maximum acceleration, green water, capsize risk or just comfort. Therefore additional roll damping is desired to prevent uncontrolled roll motion. Different means are available to decrease the roll motion of a ship, amongst other these include bilge keels, active fin stabilizers (either for forward or zero speed) and U-shape or free surface anti-roll tanks (ART). The amplitude and phase of the roll opposing moment resulting from the water that moves inside the ART are a function of the geometry of the tank and especially its internal damping. Due to the complex and non-linear nature of this flow, the use of Computational Fluid Dynamics (CFD) was chosen to analyse the details of the flow inside the tank and its anti-roll performance. The present paper focuses on the sensitivity and validation of the anti-roll performances of passive U-type ART using CFD. For this, the incompressible Unsteady Reynolds Averaged Navier-Stokes (URANS) code ReFRESCO was used. The sensitivity on the results for the U-tank is analysed by varying the grid resolution and the numerical time step. The two-dimensional (2D) full-scale and Froude based model-scale ReFRESCO results are compared to 2D and 3D full-scale CFD results of Delaunay (2012) [1] and Thanyamanta and Molyneux (2012) [2] and validated with model-scale experimental results of Field and Martin (1975) [3] and MARIN experimental results by Gunsing et al. (2014) [4]. This paper shows the influence of the convective scheme for capturing the free-surface interface and provides recommendations for a time step and grid resolution to effectively calculate the roll damping of an ART.


2020 ◽  
Vol 8 (1) ◽  
pp. 24 ◽  
Author(s):  
Wenyu Sun ◽  
Qiong Hu ◽  
Shiliang Hu ◽  
Jia Su ◽  
Jie Xu ◽  
...  

Accurate prediction of the self-propulsion performance is one of the most important factors for the energy-efficient design of a ship. In general, the hydrodynamic performance of a full-scale ship could be achieved by model-scale simulation or towing tank tests with extrapolations. With the development of CFD methods and computing power, directly predict ship performance with full-scale CFD is an important approach. In this article, a numerical study on the full-scale self-propulsion performance with propeller operating behind ship at model- and full-scale is presented. The study includes numerical simulations using the RANS method with a double-model and VOF (Volume-of-Fluid) model respectively and scale effect analysis based on overall performance, local flow fields and detailed vortex identification. The verification study on grid convergence is also performed for full-scale simulation with global and local mesh refinements. A series of sea trail tests were performed to collect reliable data for the validation of CFD predictions. The analysis of scale effect on hull-propeller interaction shows that the difference of hull boundary layer and flow separation is the main source of scale effect on ship wake. The results of the fluctuations of propeller thrust and torque along with circulation distribution and local flow field show that the propeller’s loading is significantly higher for model-scale ship. It is suggested that the difference of vortex evolution and interaction is more pronounced and has larger effects on the ship’s powering performance at model-scale than full-scale according to the simulation results. From the study on self-propulsion prediction, it could be concluded that the simplification on free surface treatment does not only affect the wave-making resistance for bare hull but also the propeller performance and propeller induced ship resistance which can be produced up to 5% uncertainty to the power prediction. Roughness is another important factor in full-scale simulation because it has up to an approximately 7% effect on the delivery power. As a result of the validation study, the numerical simulations of full-scale ship self-propulsion shows good agreement with the sea trail data especially for cases that have considered both roughness and free surface effects. This result will largely enhance our confidence to apply full-scale simulation in the prediction of ship’s self-propulsion performance in the future ship designs.


Author(s):  
Wenyu Sun ◽  
Qiong Hu ◽  
Shiliang Hu ◽  
Jia Su ◽  
Jie Xu ◽  
...  

Accurate prediction of the self-propulsion performance is one of the most important factors for energy-efficient design of a ship. In general, the hydrodynamic performance of a full-scale ship could be achieved by model-scale simulation or towing tank test with extrapolations. With the development of CFD methods and computing power, directly predict ship performance with full-scale CFD is an important approach. In this article, a numerical study on the full-scale self-propulsion performance with propeller operating behind ship at model- and full-scale is presented. The study includes numerical simulations using RANS method with double-model and VOF model respectively and scale effect analysis based on overall performance, local flow fields and detailed vortex identification. Verification study on grid convergence is also performed for full-scale simulation with global and local mesh refinements. And a series of sea trail tests were performed to collect reliable data for the validation of CFD predictions. The analysis of scale effect on hull-propeller interaction shows that the difference on hull boundary layer and flow separation is the main source of scale effect on ship wake. And the results of the fluctuations of propeller thrust and torque along with circulation distribution and local flow field show that propeller’s loading is significantly higher for model-scale ship. It is suggested that the difference on vortex evolution and interaction is more pronounced and have larger effects on ship’s powering performance at model-scale than full-scale according to the simulation results. From the study on self-propulsion prediction, it could be concluded that the simplification on free surface treatment does not only affect the wave-making resistance for bare hull but also the propeller performance and propeller induced ship resistance which can produced up to 5% uncertainty to the power prediction. Roughness is another important factor in full-scale simulation because it has up to approximately 7% effect on the delivery power. As a result of validation study, the numerical simulations of full-scale ship self-propulsion shows good agreement with the sea trail data especially for cases that have considered both roughness and free surface effects. This result will largely enhance our confidence to apply full-scale simulation in the prediction of ship’s self-propulsion performance in the future ship designs.


Sign in / Sign up

Export Citation Format

Share Document