scholarly journals Novel Insights into the Biotechnological Production of Haematococcus pluvialis-Derived Astaxanthin: Advances and Key Challenges to Allow Its Industrial Use as Novel Food Ingredient

2020 ◽  
Vol 8 (10) ◽  
pp. 789 ◽  
Author(s):  
Samuel Jannel ◽  
Yanis Caro ◽  
Marc Bermudes ◽  
Thomas Petit

Astaxanthin shows many biological activities. It has acquired a high economic potential and its current market is dominated by its synthetic form. However, due to the increase of the health and environmental concerns from consumers, natural forms are now preferred for human consumption. Haematococcus pluvialis is artificially cultured at an industrial scale to produce astaxanthin used as a dietary supplement. However, due to the high cost of its cultivation and its relatively low biomass and pigment productivities, the astaxanthin extracted from this microalga remains expensive and this has probably the consequence of slowing down its economic development in the lower added-value market such as food ingredient. In this review, we first aim to provide an overview of the chemical and biochemical properties of astaxanthin, as well as of its natural sources. We discuss its bioavailability, metabolism, and biological activities. We present a state-of-the-art of the biology and physiology of H. pluvialis, and highlight novel insights into the biotechnological processes which allow optimizing the biomass and astaxanthin productivities. We are trying to identify some lines of research that would improve the industrial sustainability and economic viability of this bio-production and to broaden the commercial potential of astaxanthin produced from H. pluvialis.

2021 ◽  
Author(s):  
Emmanuel Martínez-Montaño ◽  
Rosa María Sarmiento-Machado ◽  
Israel Benítez-García ◽  
Ramón Pacheco-Aguilar ◽  
Rosa Stephanie Navarro-Peraza ◽  
...  

Abstract Purpose High amounts of rich-protein liquid wastes are produced during seafood processing. The effluent called stickwater resulting from the processing of Pacific thread herring (Ophistonema libertate) into fishmeal, was evaluated as protein source to produce bioactive protein hydrolysates by using Alcalase as enzyme source. Methods The effect of degree of hydrolysis on biochemical properties (proximate analysis, molecular weight, amino acid composition) and antioxidant and antihypertensive activities of stickwater protein hydrolysates obtained with Alcalase was determined. Results Degree of hydrolysis (DH) of samples (5, 10 15 and 20%) influences its biochemical and bioactive properties. The maximum ABTS and FRAP activity values (P < 0.05) were exhibited by hydrolysates at 15% DH (EC50 = 2.8mg/mL and TEAC = 1.16 ± 0.03 mM TE/mg, respectively). Whereas the highest DPPH scavenging activity (P < 0.05) was found for hydrolysates at 5 and 10% of DH (EC50 = 34.7 and 37 mg/mL respectively). Furthermore, enzymatic hydrolysis enhanced angiotensin converting enzyme (ACE)-inhibitory activity, being those at 5 and 10% of DH, which exhibited lower IC50 values (P < 0.05) compared to non-hydrolyzed stickwater. Peptide distribution of protein hydrolysates at < 1.35 kDa was in a range of 47 to 62% of total peptides and the presence of amino acids related to antioxidant activity such as His, Lys, Met, Tau, Tyr and Trp was detected in stickwater and protein hydrolysates. Conclusion The production of protein hydrolysates from Pacific thread herring stickwater, represents an alternative to obtain added-value products with potential antioxidant and antihypertensive activity.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Mouna Souihi ◽  
Rayda Ben Ayed ◽  
Imen Trabelsi ◽  
Marwa Khammassi ◽  
Nadia Ben Brahim ◽  
...  

Lemon balm (Melissa officinalis L.) is one of the rare medicinal plants in Tunisia. It was found only in two sites in the north of Tunisia with a small number of plants. The study of germination under the NaCl and PEG effect showed that Tunisian lemon balm seeds were sensitive to saline and osmotic stress. Morphological and biochemical characterizations of Tunisian M. officinalis were performed. Results showed that the Tunisian populations presented plants with long, broad leaves and weak branching. The major constituent in leaf essential oil was germacrene-D with a percentage ranging from 29.17 to 24.6%, and the major fatty acids were polyunsaturated fatty acids, linoleic acid, ranging from 73.93 to 66.74%. The phenolic content of M. officinalis extract varied significantly among origins which could explain the high variation in antiradical scavenging activity. The evaluation of allelopathic activities showed that the extract of the lemon balm leaves presented an allelopathic effect with the majority of the tested seeds.


2021 ◽  
Vol 11 (23) ◽  
pp. 11097
Author(s):  
Ana Lima ◽  
Filipe Arruda ◽  
Jorge Medeiros ◽  
José Baptista ◽  
João Madruga ◽  
...  

The scientific community is paying increasing attention to plant waste valorization, and also to “greener” practices in the agriculture, food and cosmetic sectors. In this context, unused forest biomass (e.g., leaves, seed cones, branches/twigs, bark and sapwood) of Cryptomeria japonica, a commercially important tree throughout Asia and the Azores Archipelago (Portugal), is currently waste/by-products of wood processing that can be converted into eco-friendly and high added-value products, such as essential oils (EOs), with social, environmental and economic impacts. Plant-derived EOs are complex mixtures of metabolites, mostly terpenes and terpenoids, with valuable bioactivities (e.g., antioxidant, anti-inflammatory, anticancer, neuroprotective, antidepressant, antimicrobial, antiviral and pesticide), which can find applications in several industries, such as pharmaceutical, medical, aromatherapy, food, cosmetic, perfumery, household and agrochemical (e.g., biopesticides), with manifold approaches. The EOs components are also of value for taxonomic investigations. It is known that the variation in EOs chemical composition and, consequently, in their biological activities and commercial use, is due to different exogenous and endogenous factors that can lead to ecotypes or chemotypes in the same plant species. The present paper aims to provide an overview of the chemical composition, biological properties and proposals of valorization of C. japonica EO from several countries, and also to indicate gaps in the current knowledge.


Author(s):  
LAURA GONZÁLEZ ◽  
ANDREE ÁLVAREZ ◽  
ELIZABETH MURILLO ◽  
CARLOS GUERRA ◽  
JONH MÉNDEZ

Objective: Assess the performance of a crude ethanolic extract, a dichloromethane fraction and a hydroalcoholic residue, which are the basis for chemically and biologically characterizing the husk and seed of Passiflora edulis f. edulis, collected in the region and Colombia with a view to determining potential uses. Methods: Agroindustrial residues of gulupa (peel and seed) were analyzed through a bromatological study; subsequently, they were macerated with ethanol (96%). The crude ethanolic extract was partitioned with dichloromethane, leaving a hydroalcoholic residue. The content of total phenols, the composition of phytophenols (high-performance liquid chromatography-mass spectrometry), the total antioxidant capacity using 3-ethyl benzothiazoline-6-sulfonic acid (ABTS●+) and 2,2-diphenyl-1-pyridyl hydrazyl (DPPH●), the oxygen radical absorbance capacity (ORAC), and the ferric reduction power (FRAP) were determined to the extract, the fraction, and the residue. The evaluation of the inhibitory activity of the angiotensin-converting enzyme inhibitor (ACEI) and the cell viability assay with diphenyl bromide 3- (4,5-dimethylthiazole-2-) il) -2,5-tetrazolium on human leukocytes complemented the characterization. Results: Agroindustrial waste of P. edulis f. edulis, peel and seed, contains as main constituents: Protein (8.49 and 7.29%), fiber (34.2 and 55.7%), phosphorus (1.67 and 3.09), and boron (53.3 and 58.4 mg/kg), respectively. The seed showed 25.5% oil. The crude seed extract exhibited a higher phenolic content (15.34 gEAG/100 g). Likewise, it presented the highest antiradical capacity against ABTS●+ and DPPH● (706.17 and 82.81 trolox equivalent antioxidant capacity [TEAC], respectively) and antioxidant in ORAC and FRAP (142.79 TEAC and 103.63 equivalent ascorbic acid EAA, respectively). The ACEI activity (50% inhibitory concentration 17.62 mg/L) of the crude seed extract was higher than the other samples. No toxicity was found in the samples evaluated at concentrations higher than those of the biological activities manifested. Conclusion: The agroindustrial residues of P. edulis f. edulis (peel and seed) are rich in nutrients, which propose them for use in food matrices. The ethanolic extract from seed showed the highest antioxidant, antiradical, and inhibitory biological activity of the ACEI so that it could be proposed the gulupa seed as a promising phytotherapeutic product associated with its phenolic content, especially its flavonoids. The results obtained allow an added value to the fruit, reducing the chances that its waste contributes to environmental pollution.


2021 ◽  
Author(s):  
Rania Jacob ◽  
Hazem Hassan ◽  
Adel Afify ◽  
Gamal Gabr

Abstract Leather industries covers a wide chain of production and indirectly contributes to the economic flow. The different stages used in leather processing led to produce huge solid waste volumes. Because of the great effectiveness of amino acids as naturally chelates for minerals, the present study was carried out to recycling leather waste into its protein hydrolysate by CaO hydrolysis. The Leather protein hydrolysates (LPHs) was used to prepare metal-leather protein hydrolysate chelates (Cu2+-, Zn2+-& Fe2+-LPHCs) and some of their physical properties (i.e. λ-max, FTIR spectra, color, melting point) and biochemical properties as its antibacterial activity, as well as using as micronutrient elements for plant were evaluated. Results showed that the Cu2+-LPHC gave the highest value of melting point and λ-max than other chelates. All chelates shifted the vibration bands toward a higher frequency than LPH/CaO. Metal-leather protein hydrolysate (M-LPHCs) had antibacterial activities against E. coli, B. cereus and Micrococcus spp. mostly with Zn-LPHC and Fe-LPHC. These complexes also increased the growth characteristics and mineral absorption of spinach plants in hydroponic nutrient solution than that of mineral salts (CuSO4, ZnSO4 and FeSO4). Finally, the study concluded that M-LPHCs can be used as antimicrobial agent, micronutrients for plant and support the minerals bioavailability in animals.


2012 ◽  
Vol 7 (3) ◽  
pp. 1934578X1200700 ◽  
Author(s):  
Zhanjie Xu ◽  
Peng Du ◽  
Peter Meiser ◽  
Claus Jacob

Proanthocyanidins represent a unique class of oligomeric and polymeric secondary metabolites found ubiquitously and in considerable amounts in plants and some algae. These substances exhibit a range of rather surprising physical and chemical properties which, once applied to living organisms, are translated into a multitude of biological activities. The latter include antioxidant properties, cancer chemoprevention, anti-inflammatory and anti-diabetic effects as well as some exceptional, yet highly interesting activities, such as anti-nutritional and antimicrobial activity. Despite the wide range of activities and possible medical/agricultural applications of proanthocyanidins, many questions still remain, including issues related to bioavailability, metabolism and the precise biochemical, extra- and intracellular targets and mode(s) of action of these highly potent materials. Among the various physical and chemical interactions of such substances, strong binding to proteins appears to form the basis of many of their biological activities. Once easy-to-use synthetic methods to produce appropriate quantities of pure proanthocyanidins are available, it will be possible to identify the prime biological targets of these oligomers, study oligomer-protein interactions in more detail and develop possible practical applications in medicine and agriculture.


Foods ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 374 ◽  
Author(s):  
Gaber El-Saber Batiha ◽  
Amany Magdy Beshbishy ◽  
Muhammad Ikram ◽  
Zohair S. Mulla ◽  
Mohamed E. Abd El-Hack ◽  
...  

Flavonoids are a class of natural substances present in plants, fruits, vegetables, wine, bulbs, bark, stems, roots, and tea. Several attempts are being made to isolate such natural products, which are popular for their health benefits. Flavonoids are now seen as an essential component in a number of cosmetic, pharmaceutical, and medicinal formulations. Quercetin is the major polyphenolic flavonoid found in food products, including berries, apples, cauliflower, tea, cabbage, nuts, and onions that have traditionally been treated as anticancer and antiviral, and used for the treatment of allergic, metabolic, and inflammatory disorders, eye and cardiovascular diseases, and arthritis. Pharmacologically, quercetin has been examined against various microorganisms and parasites, including pathogenic bacteria, viruses, and Plasmodium, Babesia, and Theileria parasites. Additionally, it has shown beneficial effects against Alzheimer’s disease (AD), and this activity is due to its inhibitory effect against acetylcholinesterase. It has also been documented to possess antioxidant, antifungal, anti-carcinogenic, hepatoprotective, and cytotoxic activity. Quercetin has been documented to accumulate in the lungs, liver, kidneys, and small intestines, with lower levels seen in the brain, heart, and spleen, and it is extracted through the renal, fecal, and respiratory systems. The current review examines the pharmacokinetics, as well as the toxic and biological activities of quercetin.


Foods ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 843
Author(s):  
Nayely Leyva-López ◽  
Cynthia E. Lizárraga-Velázquez ◽  
Crisantema Hernández ◽  
Erika Y. Sánchez-Gutiérrez

The agroindustry generates a large amount of waste. In postharvest, food losses can reach up to 50%. This waste represents a source of contamination of soil, air, and bodies of water. This represents a problem for the environment as well as for public health. However, this waste is an important source of bioactive compounds, such as phenolic compounds, terpenes, and β-glucans, among others. Several biological activities have been attributed to these compounds; for example, antioxidant, antimicrobial, gut microbiota, and immune system modulators. These properties have been associated with improvements in health. Recently, the approach of using these bioactive compounds as food additives for aquaculture have been addressed, where it is sought that organisms, in addition to growing, preserve their health and become disease resistant. The exploitation of agro-industrial waste as a source of bioactive compounds for aquaculture has a triple objective—to provide added value to production chains, reduce pollution, and improve the well-being of organisms through nutrition. However, to make use of the waste, it is necessary to revalue them, mainly by determining their biological effects in aquaculture organisms. The composition of bioactive compounds of agro-industrial wastes, their biological properties, and their application in aquaculture will be addressed here.


2019 ◽  
Vol 4 (1) ◽  
pp. 39-62 ◽  
Author(s):  
Saara-Maria Kauppi ◽  
Ida Nilstad Pettersen ◽  
Casper Boks

Edible insects are regarded as one of the most sustainable animal protein sources for human consumption, but for western people insects are a rather unusual food ingredient. In the media, however, insect consumption is gaining increasing attention and people are starting to acknowledge insects as a potential source of protein. The eating of insects, ‘entomophagy’, is bringing new insect food companies, ‘ento-preneurs’ to the market, yet current research is still insufficient and relatively fragmented to support the commercialization of insect-based food products. Therefore, more systematic research approaches are needed in this area. This review article introduces the benefits and challenges of insect-eating, discusses the factors that are known to influence consumer acceptance, and categorizes factors including adoption strategies into a framework that can be applied in future consumer studies on entomophagy. In addition, the article introduces three distinctive examples of design interventions to illustrate how design can contribute as a strategy to support the general adoption of insect foods by western consumers.


2019 ◽  
Vol 121 (6) ◽  
pp. 1298-1313
Author(s):  
Ömer Erturk ◽  
Sefine Kalın ◽  
Melek Çol Ayvaz

PurposeThe purpose of this paper is to characterize monofloral and heterofloral honey samples (chestnut, lavandula, acacia and sunflower) from different regions of Turkey according to their physicochemical (moisture content, acidity, ash, sucrose, reducing sugar and hydroxymethylfurfural content) and biochemical properties to compare regional and species differences that are thought to contain different types of plant sources.Design/methodology/approachPhysicochemical investigations were performed according to AOAC methods. Mineral analysis and volatile analysis were performed by using atomic absorption spectrometry and GC–MS, respectively. Antimicrobial activities of honey samples were evaluated based on disc diffusion method and minimum inhibition concentration (MIC) values. The assays followed to determine total phenolic content and antioxidative and activities are spectrophotometric methods.FindingsThe obtained values of physicochemical parameters are among the values that can be accepted according to legal regulations. The most abundant mineral was potassium, which made up 81 per cent of the total mineral content, ranging between 165.7 and 301.6 mg/kg. A total of 87 different volatile components, some of which are highlighted in the literature to have antimicrobial and antioxidant effects, were detected. The maximum phenolic content, antioxidant activity against DPPH radical and ferric reducing ability were detected in the chestnut honeys. All tested honeys showed antimicrobial activity with MIC values between 6.25 and 50 µg/mL.Originality/valueThe present study has the feature of being a large study in terms of the region from where honey samples were selected and choice of analysis. The values obtained from physicochemical parameters reveal that the honeys from related region can be consumed with confidence. The biological properties found in honeys make them products of high added value and excellent quality.


Sign in / Sign up

Export Citation Format

Share Document