scholarly journals Environmental Life Cycle Assessment of Thermal Insulation Tiles for Flat Roofs

Materials ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 2595 ◽  
Author(s):  
Raul Gomes ◽  
José D. Silvestre ◽  
Jorge de Brito

Envelope insulation and protection is an important technical solution to reduce energy consumption, exterior damage, and environmental impacts in buildings. Thermal insulation tiles are used simultaneously as thermal insulation of the building envelope and protection material of under layers in flat roofs systems. The purpose of this research is to assess the environmental impacts of the life cycle of thermal insulation tiles for flat roofs. This research presents the up-to-date “cradle to gate” environmental performance of thermal insulation tiles for the environmental categories and life-cycle stages defined in European standards on environmental evaluation of building. The results presented in this research were based on site-specific data from a Portuguese factory and resulted from a consistent methodology that is here fully described, including the raw materials extraction and production, and the modelling of energy and transport processes at the production stage of thermal insulation tiles. These results reflect the weight of the raw-materials within the production process of thermal insulation tiles in all environmental categories and show that some life cycle stages, such as transportation of raw materials (A2) and packaging and packaging waste (A3.1 and A3.3, respectively), may not be discarded in a cradle to gate study of a construction material because they can make a significant contribution to some environmental categories. Moreover, complementary results regarding the economic, environmental, and energy performance Life Cycle Assessment (LCA) of flat roofs solutions incorporating the thermal insulation tiles studied showed that the influence of the economic costs on the total aggregated costs of these solutions is much higher than that of the environmental costs due to the lower environmental costs of the thermal insulation tiles at the product stage (A1–A3). These costs influenced the corresponding percentage of the environmental costs (between 14% and 18%) and the percentage of the economic costs (between 70% and 75%) in the total aggregated (environmental, economic, and energy) net present value (NPV). Finally, a complementary “cradle to cradle” environmental LCA discussion is presented including the following additional life cycle stages: maintenance and replacement (B2–B4), operational energy use (B6), and end-of-life stage and benefits and loads beyond the system boundary (C1–C4 and D).

2019 ◽  
Vol 12 (1) ◽  
pp. 294 ◽  
Author(s):  
Zhuyuan Xue ◽  
Hongbo Liu ◽  
Qinxiao Zhang ◽  
Jingxin Wang ◽  
Jilin Fan ◽  
...  

The development of higher education has led to an increasing demand for campus buildings. To promote the sustainable development of campus buildings, this paper combines social willingness-to-pay (WTP) with the analytic hierarchy process (AHP) based on the characteristics of Chinese campus buildings to establish a life cycle assessment–life cycle cost (LCA–LCC) integrated model. Based on this model, this paper analyses the teaching building at a university in North China. The results show that the environmental impacts and economic costs are largest in the operation phase of the life cycle, mainly because of the use of electric energy. The environmental impacts and economic costs during the construction phase mainly come from the building material production process (BMPP); in this process, steel is the main source. Throughout the life cycle, abiotic depletion-fossil fuel potential (ADP fossil) and global warming potential (GWP) are the most prominent indexes. Further analysis shows that these two indexes should be the emphases of similar building assessments in the near future. Finally, this study offers suggestions for the proposed buildings and existing buildings based on the prominent problems found in the case study, with the aim to provide reference for the design, construction, and operation management of similar buildings.


2016 ◽  
Vol 824 ◽  
pp. 761-769
Author(s):  
Karel Struhala ◽  
Zuzana Stránská ◽  
Jiří Sedlák

This paper brings readers a study of Life-Cycle Assessment of thermal insulation panels made of the stems of fibre flax. This study uses cradle-to-gate system boundaries, which means that only growing and harvesting of flax and subsequent processing and manufacturing of the insulation material are included in the assessment. Transport between the facilities is also included, because it has significant impact on the results - the production facility is located in Czech Republic, but thanks to the costs main components (fibre flax stems and chemical additives) are grown or produced in various countries around the globe. The paper shows that production of such insulation material has environmental impacts comparable with other insulation materials. Conclusion of the paper includes discussion about share of individual parts of the production process (growing, harvesting, transport, processing and manufacturing) on the overall results and recommendations of changes that would lead to decrease the overall environmental impacts.


Author(s):  
Daniele Landi ◽  
Leonardo Postacchini ◽  
Paolo Cicconi ◽  
Filippo E. Ciarapica ◽  
Michele Germani

In industrialized countries, packaging waste is one of the major issues to deal with, representing around 35% of the total municipal solid waste yearly generated. Therefore, an analysis and an environmental assessment of packaging systems are necessary. This paper aims at analyzing and comparing the environmental performances of two different packaging for domestic hoods. It shows how, through a packaging redesign, it is possible to obtain a reduction of the environmental impacts. This study has been performed in accordance with the international standards ISO 14040/14044, by using attributional Life Cycle Assessment (LCA) from Cradle to Gate. The functional unit has been defined as the packaging of a single household hood. Primary data have been provided by a household hood manufacturer, while secondary data have been obtained from the Ecoinvent database. LCA software SimaPro 8.5 has been used to carry out the life cycle assessment, and ReCiPe method has been chosen for the life cycle impact assessment (LCIA) stage. The results have shown the new packaging model being able to cut down the environmental impacts of approximately 30%. These outcomes may be used by household manufacturers to improve performances and design solutions of their different packaging.


Author(s):  
U. Desideri ◽  
S. Proietti ◽  
F. Zepparelli ◽  
P. Sdringola ◽  
E. Cenci

In the last twenty years, the exploitation of non-renewable resources and the effects of their applications on environment and human health were considered central topics in political and scientific debate on European and worldwide scale. This kind of resources have been used in different sectors, as energy systems, technological research, but also in private/public buildings and production of consumer goods, involving significantly domestic and ordinary life of every human being. Studies about the effect of this exploitation carried out discouraging results, in terms of climate changes and energy sustenance; this determined a progressive approach process to a new concept of development, able to couple the qualitative standard of modern life with the respect of planet and its inhabitants. Starting from this reflection, scientific community moved towards research on alternative resources and developed a new way to conceive planning process and technical innovations, in order to exploit renewable energies and recycled materials, promote energy savings and reduce environmental pollution. In this context the present paper aims at evaluating benefits relating to different solutions of thermal insulation in building envelope. In fact a high grade of insulation ensures better comfort conditions in inner spaces, reducing energy consumptions due to heating and cooling conditioning. The paper presents the results of a detailed Life Cycle Assessment (LCA) of the reflective foil ISOLIVING, conceived and produced by an Italian company. The Life Cycle Assessment methodology allows to consider all stages of the life cycle, from the extraction of raw materials to the product’s disposal, in an optics “from cradle to grave.” In particular, the study takes into account the production phase of the reflective foil ISOLIVING, the installation phase, the transport of all components to the production site and also the end of life scenario of the material. The possibility to collect many detailed information about the production phase adds value to the study. The analysis is carried out according to UNI EN ISO 14040 and UNI EN ISO 14044, which regulate the LCA procedure. The LCA modeling was performed using SimaPro software application. The results of the analysis allow to make an important comparison concerning the environmental performances, between the reflective foil ISOLIVING and other types of insulating materials.


2021 ◽  
Author(s):  
BURÇİN ATILGAN TÜRKMEN

Abstract A massive increase in the use and production of masks worldwide has been seen in the current COVID-19 pandemic, which has contributed to reducing the transmission of the virus globally. This paper aims to evaluate the environmental impacts of disposable medical masks using the Life Cycle Assessment (LCA) method, first for the selected functional unit related to the manufacturing of one disposable medical mask and then for the global manufacturing of this type of mask in 2020. The inventory data was constructed directly from the industry. The system boundaries include the fabric, nose wire, and ear loops parts, transportation of materials, body making, ultrasonic vending, and packaging steps. The results suggest that the global warming potential of a disposable medical mask is 0.02 g CO2-Eq. for which the main contributor is the packaging step (44%) followed by the life cycle of fabric (27%), and nose wire (14%) parts. In total, 52 billion disposable medical masks used worldwide consumes 25 TJ of energy in 2020. The global warming potential of disposable medical masks supplied in a year of the COVID-19 pandemic is 1.1 Mt CO2 eq., equivalent to around 1.3 billion return flights from Istanbul to New York. This paper assessed the hotspots in the medical mask, allowing for a significant reduction in the environmental impact of mask use. This can be used as a roadmap for future mask designs.


2020 ◽  
Vol 12 (2) ◽  
pp. 704 ◽  
Author(s):  
Filippo G. Praticò ◽  
Marinella Giunta ◽  
Marina Mistretta ◽  
Teresa Maria Gulotta

Recycled and low-temperature materials are promising solutions to reduce the environmental burden deriving from hot mix asphalts. Despite this, there is lack of studies focusing on the assessment of the life-cycle impacts of these promising technologies. Consequently, this study deals with the life cycle assessment (LCA) of different classes of pavement technologies, based on the use of bituminous mixes (hot mix asphalt and warm mix asphalt) with recycled materials (reclaimed asphalt pavements, crumb rubber, and waste plastics), in the pursuit of assessing energy and environmental impacts. Analysis is developed based on the ISO 14040 series. Different scenarios of pavement production, construction, and maintenance are assessed and compared to a reference case involving the use of common paving materials. For all the considered scenarios, the influence of each life-cycle phase on the overall impacts is assessed to the purpose of identifying the phases and processes which produce the greatest impacts. Results show that material production involves the highest contribution (about 60–70%) in all the examined impact categories. Further, the combined use of warm mix asphalts and recycled materials in bituminous mixtures entails lower energy consumption and environmental impacts due to a reduction of virgin bitumen and aggregate consumption, which involves a decrease in the consumption of primary energy and raw materials, and reduced impacts for disposal. LCA results demonstrate that this methodology is able to help set up strategies for eco-design in the pavement sector.


2014 ◽  
Vol 787 ◽  
pp. 106-110 ◽  
Author(s):  
Zhu Li ◽  
Xian Zheng Gong ◽  
Zhi Hong Wang ◽  
Yu Liu ◽  
Li Ping Ma ◽  
...  

Although outer wall thermal insulation technology is an effective measure for building energy-saving, the production of thermal insulation materials causes serious impacts on environment. In the present investigation the resource, energy consumption and environmental emission of the two kinds of thermal insulation materials were analyzed, from the acquisition of raw materials to production process based on Life Cycle Assessment (LCA). The result show that life cycle energy consumption of rock wool board is 415MJ per functional unit, proximately twice of EPS board’s (220MJ). Overall, environmental impact indicators caused by rock wool board is more serious than EPS.


2017 ◽  
Vol 15 (5) ◽  
pp. 667-688 ◽  
Author(s):  
Milad Soleimani ◽  
Mohsen Shahandashti

Purpose Bioconcrete is widely believed to be environmentally beneficial over conventional concrete. However, the process of bioconcrete production involves several steps, such as waste recovery and treatment, that potentially present significant environmental impacts. Existing life-cycle assessments of bioconcrete are limited in the inventory and impact analysis; therefore, they do not consider all the steps involved in concrete production and the corresponding impacts. The purpose of this study is to extensively study the cradle-to-gate environmental impacts of all the production stages of two most common bioconcrete types (i.e. sludge-based bioconcrete and cement kiln dust-rice husk ash (CKD-RHA) bioconcrete) as opposed to conventional concrete. Design/methodology/approach A cradle-to-gate life-cycle assessment process model is implemented to systematically analyze and quantify the resources consumed and the environmental impacts caused by the production of bioconcrete as opposed to the production of conventional concrete. The impacts analyzed in this assessment include global warming potential, ozone depletion potential, eutrophication, acidification, ecotoxicity, smog, fossil fuel use, human toxicity, particulate air and water consumption. Findings The results indicated that sludge-based bioconcrete had higher levels of global warming potential, eutrophication, acidification, ecotoxicity, fossil fuel use, human toxicity and particulate air than both conventional concrete and CKD-RHA bioconcrete. Originality/value The contribution of this study to the state of knowledge is that it sheds light on the hidden impacts of bioconcrete. The contribution to the state of practice is that the results of this study inform the bioconcrete production designers about the production processes with the highest impact.


2017 ◽  
Vol 15 (2) ◽  
Author(s):  
Juan Arango

<p class="p1"><span class="s1">T</span>he purpose of this study was to address the concerns about sustainability between the uses of hard copy reference documents versus online copies. This project presents a Life Cycle Assessment (LCA) study comparing the production and use of a hard copy handout versus an online handout. For the purpose of this study, paper handouts and online handouts are two different and independent processes. This means that they not only have different outputs but also have different manufacturing stages in order to get to the final result. The scope of this study is “cradle to grave,” starting with the extraction of the raw materials, followed by paper and computer production processes, transportation, product use and disposal/recovery. Results indicate that under the made assumptions, the use of a paper handout has more environmental impacts. At the same time among the evaluated processes, paper production has higher environmental impacts.</p>


Sign in / Sign up

Export Citation Format

Share Document