scholarly journals Influence of Current Feeding Position of Duplex Current Feeding MIG Welding on Droplet Heat Quantity

Materials ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 3590
Author(s):  
Atsuhito Aoki ◽  
Shinichi Tashiro ◽  
Hideaki Kurokawa ◽  
Manabu Tanaka

Pure argon metal inert gas (MIG) welding is expected to offer the possibility to obtain high toughness weld joints. However, due to its arc instability and low wettability, it is difficult to apply pure argon MIG to a practical welding structure. In order to solve these problems, an improved MIG welding process with a duplex current feeding (DCF-MIG) mechanism was developed. In the DCF-MIG process, the welding current and the wire feeding speed are independently controlled by an additionally feeding secondary current from a secondary power source. Thereby, DCF-MIG can supply a large current compared to conventional MIG under the same deposition rate. In this study, to consider the influence of the secondary current feeding position of DCF-MIG on droplet heat quantity, droplet heat quantity was measured by calorimetry. As a result, the droplet heat quantity was found to be increased significantly with the increase of the distance between the primary current feeding point and secondary current feeding point. The increase of the droplet heat quantity in the DCF-MIG process had a strong effect on improving bead shape and penetration. The droplet heat quantity with the effective current value of DCF-MIG was derived from the simplified calculation and the results roughly agreed with the experimental data.

2018 ◽  
Vol 14 (1) ◽  
pp. 118-127 ◽  
Author(s):  
Emad Kh. Hamd ◽  
Abbas Sh. Alwan ◽  
Ihsan Khalaf Irthiea

In the present study, MIG welding is carried out on low carbon steel type (AISI 1015) by using electrode ER308L of 1.5mm diameter with direct current straight polarity (DCSP). The joint geometry is of a single V-butt joint with one pass welding stroke for different plate thicknesses of 6, 8, and 10 mm. In welding experiments, AISI 1015 plates with dimensions of 200×100mm and edge angle of 60o from both sides are utilized. In this work, three main parameters related to MIG welding process are investigated, which are welding current, welding speed, heat input and plate thickness, and to achieve that three groups of plates are employed each one consists of three plates. The results indicate that increasing the weld heat input (through changing the current and voltage) leads to an increase in widmanstatten ferrite (WF), acicular ferrite (AF) and polygonal ferrite (PF) in FZ region, and a reduction in grain size. It is observed that the micro-hardness of welded AISI 1015 plate increases as the weld heat input decreases. As well as increasing the weld heat input results in an increase in the width of WM and HAZ and a reduction in the impact energy of the weld joint of AISI 1015 at WM region. Also, it is noted the corrosion rate of weld joint increases with increase of Icorr due to increasing in welding current (heat input), corrosion rate increased up to (0.126µm/yr.) with increasing of heat input up to (1.27 KJ/mm).  


2011 ◽  
Vol 2-3 ◽  
pp. 69-73
Author(s):  
Kuan Fang He ◽  
Ji Gang Wu ◽  
Si Wen Xiao

This research aims at the retention of the stability of arcs in twin-arc pulsed metal active gas welding process. That is, a correction-factor fuzzy logic controller (FLC) is designed to keep the stability of arcs of twin-arcs pulsed metal active gas welding (MAG) process. In the controller, the peak arc voltage of the master welding power is controlled by the pulse base time with means of feed back of arc voltage. The peak arc voltage of slave welding power is controlled by the wire feeding speed with means of feed back of peak arc voltage. The adjusting fuzzy control rule with correction factor is introduced to design for controlling rule and table, and the FLC is realized in a Look-Up-Table (LUT) method. With the controller, the arc length can be kept stable in welding process. Experimental results are provided to confirm the effectiveness of this approach.


2018 ◽  
Vol 7 (4.37) ◽  
pp. 192
Author(s):  
Aysha Sh. Hasan ◽  
Obed M. Ali ◽  
Adnan M. Alsaffawi

Welding is an important process commonly used to join the different materials together. There are many methods for welding process;therefore, the specifications of weldments will depend on the type of welding process. In this study, investigation of the effect of electrical current on the weldment mechanical propertieswas conducted. Medium carbon steel & stainless steel were welded using two types of joints (single Lap joint and single v-groove Butt joint). The results showedthat the temperature increased with increasing the electrical current. A significant effect of electrical current on the ultimate tensile strength of the weldments is obtaineddepending on the joint type rather than welding type.Furthermore, there was a noticeable effect for the joining method on the heat generated.The heat generated increases with increasing the electrical current for all weldments (lap & butt) joint in both TIG & MIG welding process. However,the amount of heat generated was for TIG welding process specimens higher than from MIG welding process specimens for Butt and Lap type joints. 


Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2560
Author(s):  
Guowei Zhang ◽  
Ting Lin ◽  
Ling Luo ◽  
Boming Zhang ◽  
Yuao Qu ◽  
...  

Thermoplastic composites (TPCs) are promising materials for aerospace, transportation, shipbuilding, and civil use owing to their lightweight, rapid prototyping, reprocessing, and environmental recycling advantages. The connection assemblies of TPCs components are crucial to their application; compared with traditional mechanical joints and adhesive connections, fusion connections are more promising, particularly resistance welding. This study aims to investigate the effects of process control parameters, including welding current, time, and pressure, for optimization of resistance welding based on glass fiber-reinforced polypropylene (GF/PP) TPCs and a stainless-steel mesh heating element. A self-designed resistance-welding equipment suitable for the resistance welding process of GF/PP TPCs was manufactured. GF/PP laminates are fabricated using a hot press, and their mechanical properties were evaluated. The resistance distribution of the heating elements was assessed to conform with a normal distribution. Tensile shear experiments were designed and conducted using the Taguchi method to evaluate and predict process factor effects on the lap shear strength (LSS) of GF/PP based on signal-to-noise ratio (S/N) and analysis of variance. The results show that current is the main factor affecting resistance welding quality. The optimal process parameters are a current of 12.5 A, pressure of 2.5 MPa, and time of 540 s. The experimental LSS under the optimized parameters is 12.186 MPa, which has a 6.76% error compared with the result predicted based on the S/N.


2019 ◽  
Vol 33 (01n03) ◽  
pp. 1940045 ◽  
Author(s):  
Z. Zhang ◽  
R. Wang ◽  
G. Gou ◽  
H. Chen ◽  
W. Gao

In this paper, we study the droplet transition behavior of narrow gap laser wire filling welding under the condition of changing welding speed and wire feeding speed, and it was observed by high-speed photography. It was found that with the increase of welding speed, the frequency of droplet transfer was reduced and the transition period was prolonged. With the increase of wire feeding speed, the wire was not fully melted and finally inserted into the molten pool.


Author(s):  
U. Ersoy ◽  
S. J. Hu ◽  
E. Kannatey-Asibu

A lumped parameter dynamical model is developed to describe the metal transfer for gas metal arc welding (GMAW) in the globular mode. The oscillations of molten drop are modeled using a mass-spring-damper system with variable mass and spring coefficient. An analytical solution is developed for the variable coefficient system to better understand the effect of various model parameters on the drop oscillations. The effect of welding drop motion on the observed current and voltage signals is investigated and the model agrees well with the experimental results. Furthermore, the effect of wire feeding rate (or welding current) on the metal transfer cycle time is studied and the model successfully estimates the cycle times for different wire feeding rates.


2018 ◽  
Vol 197 ◽  
pp. 12007 ◽  
Author(s):  
Ekak Novianto ◽  
Priyo Tri Iswanto ◽  
Mudjijana Mudjijana

Aluminum alloy 5083 H116 has an exceptional performance in extreme environments, moderately high strength, outstanding corrosion resistance in salt water and high impact strength at cryogenic temperature. In the present study, Aluminum alloy AA 5083 H116 plates were joined by tungsten inert gas (TIG) process by single and double sided welding. Welding current used was 53 A and 80 A with the addition of purging gas during welding process. The effects on micro structure and mechanical properties like surface hardness and tensile strength of the welded region were studied. The results have shown that optimum current out of the two weld current used is 53 A. Better microstructures, tensile and hardness were found in the welded joint for the weld current 53 A where the tensile obtained in the softened zone was approximately 87% than that of the base metal (BM). With increasing of TIG current, the width of PMZ increased. In addition, the doubled sided welding sequence also produced broader PMZ area.


2017 ◽  
Vol 904 ◽  
pp. 19-23
Author(s):  
Van Nhat Nguyen ◽  
Quoc Manh Nguyen ◽  
Dang Thi Huong Thao ◽  
Shyh Chour Huang

Welding dissimilar materials has been widely applied in industries. Some of them are considered this as a strategy to develop their future technology products. Aluminum alloy and stainless steel have differences in physical, thermal, mechanical and metallurgic properties. However, selecting a suitable welding process and welding rods can solve this problem. This research aimed to investigate the T-joint welding between A6061 aluminum alloy and SUS304 stainless steel using new welding rods, Aluma-Steel by the Tungsten Inert Gas (TIG) welding process. The mechanical properties, the characteristics of microstructure, and component analysis of the welds have been investigated by the mechanical testing, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). As a result, the fracture occurred at the adjacent area between welding seam and A6061 alloys plate. The thermal cracking appeared at central welding-seam along the base metals if high welding current. A large amount of copper elements found in the welds due to using the new welding rod, Aluma-Steel rod.


Sign in / Sign up

Export Citation Format

Share Document