scholarly journals Preparation and Photocatalytic Properties of Metal-Doped ZnO Nanofilms Grown on Graphene-Coated Flexible Substrates

Materials ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 3589
Author(s):  
Ping Rong ◽  
Shuai Ren ◽  
Jianchao Jiang ◽  
Qi Yu ◽  
Liyun Jiang ◽  
...  

A series of metal element (Al, Fe, Mg and Ni)-doped ZnO (M-ZnO) photocatalysts have been successfully synthesized on graphene-coated polyethylene terephthalate (GPET) flexible substrate via the hydrothermal method. The effects of doped metals in ZnO were also studied on the crystal structure, morphology and photocatalytic performance. The photocatalytic experiment results indicated that, compared with Al-, Mg- and Fe-ZnO/GPET photocatalysts under ultraviolet (UV) light irradiation, Ni-ZnO/GPET had better photocatalytic activity, and the degradation rate of methylene blue (MB) was 81.17%. Meanwhile, the mechanism of enhancing the photocatalytic activity of metal element-doped ZnO is also discussed. It is concluded that, after doping with metal elements, electrons and holes are prevented from recombination by trapping electrons of the ZnO/GPET conductive band, thereby improving the photocatalytic activity.

RSC Advances ◽  
2018 ◽  
Vol 8 (31) ◽  
pp. 17582-17594 ◽  
Author(s):  
Umair Alam ◽  
Azam Khan ◽  
Danish Ali ◽  
Detlef Bahnemann ◽  
M. Muneer

In this study, we compared the photocatalytic activity of sol–gel derived rare earth metal (La, Nd, Sm and Dy)-doped ZnO photocatalysts by studying the degradation of MB and RhB under UV light irradiation.


2021 ◽  
Vol 553 ◽  
pp. 149535
Author(s):  
Elisa Moretti ◽  
Elti Cattaruzza ◽  
Cristina Flora ◽  
Aldo Talon ◽  
Eugenio Casini ◽  
...  

2015 ◽  
Vol 827 ◽  
pp. 19-24 ◽  
Author(s):  
Nur Afifah ◽  
Nadia Febiana Djaja ◽  
Rosari Saleh

In this study, the photocatalytic activity of pure Fe- doped ZnO and Fe- doped ZnO/Montmorillonite nanocomposite has been investigated for the degradation of malachite green under UV light irradiation. Both photocatalysts were synthesized using co-precipitation method and characterized by X-ray diffraction, energy dispersive X-ray spectroscopy, Fourier-transform infrared absorption, and electron spin resonance. The results showed that the photocatalytic efficiency is better in the presence of montmorillonite compared to pure Fe- doped ZnO. To detect the possible reactive species involved in degradation of organic dyes control experiments with introducing scavengers into the solution of organic dyes were carried out. It is found that electron plays an important role in the degradation of malachite green.


2011 ◽  
Vol 194-196 ◽  
pp. 385-388
Author(s):  
Hong Juan Wang ◽  
Feng Qiang Sun ◽  
Ming Zhong Ren ◽  
Qing Wei Guo

Nanoporous SnO2with high photocatalytic activity has been successfully prepared by a photochemical method, using SnCl2aqueous solution as a precursor. The as-synthesized sample was characterized by XRD, N2 adsorption-desorption and UV-vis. The photocatalytic activity of the sample was evaluated by degrading methylene blue (MB) aqueous solution under the UV light source and was compared with that of the commercial titania (Degussa P25). The results showed that the produced SnO2can degrade MB solution quickly and has comparative photocatalytic performance with P25 for degrading MB. This facile method supplies an effective way to prepare SnO2photocatalyst.


Author(s):  
Thế Luân Nguyễn ◽  
Tiến Khoa Lê ◽  
Châu Ngọc Hoàng ◽  
Hữu Khánh Hưng Nguyễn ◽  
Thị Kiều Xuân Huỳnh

The Cu doped ZnO photocatalysts were prepared on ZnO substrate modified with copper nitrate by thermal shock method with different ratio % molar Cu : Zn = 0.3, 0.5, 1.0, 2.0 and 5.0 in order to study the impacts of copper content on the photocatalytic activity of ZnO under both UV and Vis light irradiation. The crystal structure, morphology bulk and surface were investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). Their photocatalytic activities were studied via time-dependent degradation of methylene blue in aqueous solution. The results exhibit that crystal structure and morphology of Cu doped ZnO photocatalysts is not modified significally than ZnO original but surface charateristicschanged greatly. The photocatalyst was doped with copper content under 2% showed formation of Cu species. These samples perform photocatalytic activity higher than ZnO. The CuNZO-0.05-500 had the highest rate constants for methylene blue degradation (kUV = 6,901 h-1, kVIS = 0,224 h-1), which are about 2.2 times and 1.3 times higher than unmodified ZnO under UV light and Vis light, respectively. However, the CuNZO-5.0-500 which had the formation of CuO phase and unchangeable ZnO's surface has photocatalytic activity similar to pure ZnO.


2020 ◽  
Vol 307 ◽  
pp. 223-228
Author(s):  
Wan Rafizah Wan Abdullah ◽  
Lee Chia Siang ◽  
Maishara Syazrinni Rooshde ◽  
Mohd Sabri Mohd Ghazali

Cerium (Ce) doped ZnO is a promising material for advanced photocatalysis. It is useful for inducing the treatment of many organic pollutants in water. However, the stability of its performance under varying temperature and saline condition has never been not fully assessed. In this study, powder form photocatalyst comprising 99.0 mol% ZnO and 1 mol% CeO2 has been synthesized via modified citrate gelation technique and solid-state sintering at 1200 °C for 5 hours. The conversion of Ce doped ZnO from its precursors has been confirmed using XRD, SEM, and EDX techniques. The photocatalytic efficiency of the synthesized Ce doped ZnO under UV-C light (λ=265 nm) was determined. In the experiment, the operating temperature was varied between 25 to 40 °C, and the salinity of the treated solution was increased from 0 to 40 g/L NaCl. The findings revealed that the photocatalytic efficiency of Ce doped ZnO under UV light improved from 78.2% to 88.6% as the temperature increased from 25 to 40 °C. The performance of Ce doped ZnO decreased from 86.7% to 36.7% when the salinity increased from 0 g/L to 40 g/L. The elevation of temperature encouraged the photogeneration of electron-hole pairs on catalyst surface while the presence of chloride ions in treated medium caused scavenging of hydroxyl radicals or hole.


Sign in / Sign up

Export Citation Format

Share Document