scholarly journals Manufacturing Aluminum/Multiwalled Carbon Nanotube Composites via Laser Powder Bed Fusion

Materials ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 3927
Author(s):  
Eo Ryeong Lee ◽  
Se Eun Shin ◽  
Naoki Takata ◽  
Makoto Kobashi ◽  
Masaki Kato

This study provides a novel approach to fabricating Al/C composites using laser powder bed fusion (LPBF) for a wide range of structural applications utilizing Al-matrix composites in additive manufacturing. We investigated the effects of LPBF on the fabrication of aluminum/multiwalled carbon nanotube (Al/MWCNT) composites under 25 different conditions, using varying laser power levels and scan speeds. The microstructures and mechanical properties of the specimens, such as elastic modulus and nanohardness, were analyzed, and trends were identified. We observed favorable sintering behavior under laser conditions with low energy density, which verified the suitability of Al/MWCNT composites for a fabrication process using LPBF. The size and number of pores increased in specimens produced under high energy density conditions, suggesting that they are more influenced by laser power than scan speed. Similarly, the elastic modulus of a specimen was also more affected by laser power than scan speed. In contrast, scan speed had a greater influence on the final nanohardness. Depending on the laser power used, we observed a difference in the crystallographic orientation of the specimens by a laser power during LPBF. When energy density is high, texture development of all samples tended to be more pronounced.

2021 ◽  
Author(s):  
Aditi Thanki ◽  
Louca Goossens ◽  
Agusmian Partogi Ompusunggu ◽  
Mohamad Bayat ◽  
Abdellatif Bey-Temsamani ◽  
...  

Abstract In laser powder bed fusion (LPBF), defects such as pores or cracks can seriously affect the final part quality and lifetime. Keyhole porosity, being one type of porosity defects in LPBF, results from excessive energy density which may be due to changes in process parameters (laser power and scan speed) and/or result from the part’s geometry and/or hatching strategies. To study the possible occurrence of keyhole pores, experimental work as well as simulations were carried out for optimum and high volumetric energy density conditions in Ti-6Al-4V grade 23. By decreasing the scanning speed from 1000 mm/s to 500 mm/s for a fixed laser power of 170 W, keyhole porosities are formed and later observed by X-ray computed tomography. Melt pool images are recorded in real-time during the LPBF process by using a high speed coaxial Near-Infrared (NIR) camera monitoring system. The recorded images are then pre-processed using a set of image processing steps to generate binary images. From the binary images, geometrical features of the melt pool and features that characterize the spatter particles formation and ejection from the melt pool are calculated. The experimental data clearly show spatter patterns in case of keyhole porosity formation at low scan speed. A correlation between the number of pores and the amount of spatter is observed. Besides the experimental work, a previously developed, high fidelity finite volume numerical model was used to simulate the melt pool dynamics with similar process parameters as in the experiment. Simulation results illustrate and confirm the keyhole porosity formation by decreasing laser scan speed.


Author(s):  
J. C. Heigel ◽  
B. M. Lane

This work presents high speed thermographic measurements of the melt pool length during single track laser scans on nickel alloy 625 substrates. Scans are made using a commercial laser powder bed fusion machine while measurements of the radiation from the surface are made using a high speed (1800 frames per second) infrared camera. The melt pool length measurement is based on the detection of the liquidus-solidus transition that is evident in the temperature profile. Seven different combinations of programmed laser power (49 W to 195 W) and scan speed (200 mm/s to 800 mm/s) are investigated and numerous replications using a variety of scan lengths (4 mm to 12 mm) are performed. Results show that the melt pool length reaches steady state within 2 mm of the start of each scan. Melt pool length increases with laser power, but its relationship with scan speed is less obvious because there is no significant difference between cases performed at the highest laser power of 195 W. Although keyholing appears to affect the anticipated trends in melt pool length, further research is required.


Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1049
Author(s):  
Ji-Hoon Jang ◽  
Hyung-Guin Kim ◽  
Hwi-Jun Kim ◽  
Dong-Geun Lee

Ti-2.5Zr-5.0Hf-37.5Cu-7.5Ni-1.0Si-5.0Sn (at.%) BMG has been successfully manufactured in amorphous powder with a size of about 25 μm (D50). Using this amorphous powder, a Ti-based BMG was manufactured by an additive manufacturing process based on a laser powder bed fusion (LPBF) technique. In 3D printing processes using amorphous powders, it is necessary and important to understand the crystallization behavior due to the difference in energy density applied to the powders. An LPBF process has been carried out with various energy density conditions to minimize the inner defects and identify the sound mechanical properties of 3D-printed BMG parts. At the lowest energy density condition (3.0 J/mm3), the most pores were generated. Even if the same energy density (3.0 J/mm3) was applied, the rapid laser movement caused many pores to form inside the material. The relatively sound 3D-printed Ti-based BMG was successfully fabricated with a size of about 5 mm × 5 mm × 3 mm. Peaks at 41° and 44° showing crystallization were observed in all conditions. The higher the laser power was, the greater each peak intensity and the more crystallization (CuTi, Ti3Cu4, etc.) was present in the BMG, and the higher the scan speed, the more the internal defects were found.


Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 832
Author(s):  
Nathalia Diaz Vallejo ◽  
Cameron Lucas ◽  
Nicolas Ayers ◽  
Kevin Graydon ◽  
Holden Hyer ◽  
...  

The microstructural development of 316L stainless steel (SS) was investigated over a wide range of systematically varied laser powder bed fusion (LPBF) parameters, such as laser power, scan speed, hatch spacing and volumetric energy density. Relative density, melt pool width and depth, and the size of sub-grain cellular structure were quantified and related to the temperature field estimated by Rosenthal solution. Use of volumetric energy density between 46 and 127 J/mm3 produced nearly fully dense (≥99.8%) samples, and this included the best parameter set: power = 200 W; scan speed = 800 mm/s; hatch spacing = 0.12 mm; slice thickness = 0.03; energy density = 69 J/mm3). Cooling rate of 105 to 107 K/s was estimated base on the size of cellular structure within melt pools. Using the optimized LPBF parameters, the as-built 316L SS had, on average, yield strength of 563 MPa, Young’s modulus of 179 GPa, tensile strength of 710 MPa, and 48% strain at failure.


Crystals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 320
Author(s):  
Wenyuan Wang ◽  
Naoki Takata ◽  
Asuka Suzuki ◽  
Makoto Kobashi ◽  
Masaki Kato

Centimeter-sized samples of hypereutectic Al–15 mass% Fe alloy were manufactured by a laser powder bed fusion (L-PBF) process while systematically varying laser power (P) and scan speed (v). The effects on relative density and melt pool depth of L-PBF-manufactured samples were investigated. In comparison with other Al alloys, a small laser process window of P = 77–128 W and v = 0.4–0.8 ms−1 was found for manufacturing macroscopically crack-free samples. A higher v and P led to the creation of macroscopic cracks propagating parallel to the powder-bed plane. These cracks preferentially propagated along the melt pool boundaries decorated with brittle θ-Al13Fe4 phase, resulting in low L-PBF processability of Al–15%Fe alloy. The deposited energy density model (using P·v−1/2) would be useful for identifying the optimum L-PBF process conditions towards densification of Al–15%Fe alloy samples, in comparison with the volumetric energy density (using P·v−1), however, the validity of the model was reduced for this alloy in comparison with other alloys with high thermal conductivities. This is likely due to inhomogeneous microstructures having numerous coarsened θ–Al13Fe4 phases localized at melt pool boundaries. These results provide insights into achieving sufficient L-PBF processability for manufacturing dense Al–Fe binary alloy samples.


Author(s):  
J. C. Heigel ◽  
B. M. Lane

This work presents high-speed thermographic measurements of the melt pool length during single track laser scans on nickel alloy 625 substrates. Scans are made using a commercial laser powder bed fusion (PBF) machine while measurements of the radiation from the surface are made using a high speed (1800 frames per second) infrared camera. The melt pool length measurement is based on the detection of the liquidus–solidus transition that is evident in the temperature profile. Seven different combinations of programmed laser power (49–195 W) and scan speed (200–800 mm/s) are investigated, and numerous replications using a variety of scan lengths (4–12 mm) are performed. Results show that the melt pool length reaches steady-state within 2 mm of the start of each scan. Melt pool length increases with laser power, but its relationship with scan speed is less obvious because there is no significant difference between cases performed at the highest laser power of 195 W. Although keyholing appears to affect the anticipated trends in melt pool length, further research is required.


Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5171
Author(s):  
Alessandra Martucci ◽  
Fabrizio Marinucci ◽  
Antonio Sivo ◽  
Alberta Aversa ◽  
Diego Manfredi ◽  
...  

The production of dense samples produced by laser powder bed fusion (LPBF) is mainly determined by the choice of the best combination of construction parameters. Parameter optimization is the first step in the definition of an LPBF process for new alloys or systems. With this goal, much research uses the single scan track (SST) approach for a preliminary parameter screening. This study investigates the definition of a computer-aided method by using an automatic on top analysis for the characterization of SSTs, with the aim of finding ranges of laser power and scan speed values for massive production. An innovative algorithm was implemented to discard non-continuous scans and to measure the SSTs quality using three regularity indexes. Only open source software were used to fine tune this approach. The obtained results on Al4Cu and AlSi10Mg realized with two different commercial systems suggest that it is possible to use this method to easily narrow the process parameter window that allows the production of dense samples.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 538 ◽  
Author(s):  
Fabrizia Caiazzo ◽  
Vittorio Alfieri ◽  
Giuseppe Casalino

Laser powder bed fusion (LPBF) can fabricate products with tailored mechanical and surface properties. In fact, surface texture, roughness, pore size, the resulting fractional density, and microhardness highly depend on the processing conditions, which are very difficult to deal with. Therefore, this paper aims at investigating the relevance of the volumetric energy density (VED) that is a concise index of some governing factors with a potential operational use. This paper proves the fact that the observed experimental variation in the surface roughness, number and size of pores, the fractional density, and Vickers hardness can be explained in terms of VED that can help the investigator in dealing with several process parameters at once.


Author(s):  
Massimiliano Bonesso ◽  
Pietro Rebesan ◽  
Claudio Gennari ◽  
Simone Mancin ◽  
Razvan Dima ◽  
...  

AbstractOne of the major benefits of the Laser Powder Bed Fusion (LPBF) technology is the possibility of fabrication of complex geometries and features in only one-step of production. In the case of heat exchangers in particular, this is very convenient for the fabrication of conformal cooling channels which can improve the performance of the heat transfer capability. Yet, obtaining dense copper parts printed via LPBF presents two major problems: the high reflectivity of 1 μm (the wavelength of commonly used laser sources) and the high thermal conductivity of copper that limits the maximum local temperature that can be attained. This leads to the formation of porous parts.In this contribution, the influence of the particle size distribution of the powder on the physical and mechanical properties of parts produced via LPBF is studied. Three copper powders lots with different particle size distributions are used in this study. The effect on densification from two laser scan parameters (scan speed and hatching distance) and the influence of contours scans on the lateral surface roughness is reported. Subsequently, samples manufactured with the optimal process parameters are tested for thermal and mechanical properties evaluation.


Sign in / Sign up

Export Citation Format

Share Document