scholarly journals Sulfate Attacks on Uncarbonated Fly Ash + Cement Pastes Partially Immersed in Na2SO4 Solution

Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4920
Author(s):  
Zanqun Liu ◽  
Min Pei ◽  
Yuelin Li ◽  
Qiang Yuan

In this study, the sulfate attack on uncarbonated cement paste partially exposed to Na2SO4 solution was experimentally investigated and compared with that on carbonated specimens with the same exposure regime and uncarbonated specimens without exposure. N2 was used to protect specimens from carbonation throughout the sulfate exposure period. The effects of the water-to-cement (w/c) ratio and the fly ash as cement replacement on the sulfate attack were evaluated. Portland cement paste specimens with different w/c ratios of 0.35, 0.45, and 0.55 or fly ash replacement rates of 10%, 20%, and 30% were prepared. These specimens were partially immersed in 5% Na2SO4 solution for 50 d and 100 d exposure periods. The micro-analysis was conducted to evaluate the effect of the partial sulfate attack on the uncarbonated cement paste using X-ray diffraction (XRD) and thermo-gravimetric (TG) techniques. The results confirmed that, for uncarbonated cement paste, the chemical attack rather than the physical attack is the deterioration mechanism and is responsible for more severe damage in the evaporation zone (dry part) compared with the immersed zone (immersed part). When the effect of carbonation is well excluded, there is an optimal w/c ratio of 0.45 for minimizing the sulfate attack, while incorporating fly ash tends to reduce the sulfate attack resistance.

2013 ◽  
Vol 539 ◽  
pp. 19-24 ◽  
Author(s):  
Yong Qi Wei ◽  
Wu Yao

The quantitative characterization of hydration of cement pastes has always been one of focuses of researchers’ attention. Rietveld phase analysis (RPA), a combination of quantitative X-ray diffraction (QXRD) and the Rietveld method, supplies a tool of an enormous potential for that. Although a few of related researches were conducted by RPA, the reported attention was not paid to the neat cement paste with a low w/c ratio. Therefore, this work aimed at the quantitative study on hydration of such a cement paste chiefly by this method, meanwhile, cooperated with the hyphenated technique of thermogravimetry with differential scanning calorimetry (TG-DSC), as a spot check. Results indicated that RPA was a reliable method in quantitatively characterizing hydration of cement pastes, and gave a clear decription of evolution of all main crystal phases in cement pastes; and that the evolution of monosulphate(Afm_12) was also able to be tracked quantitatively. This will help to understand better the hydration mechanism of cement pastes, as well as to investigate quantitatively effects of mineral and chemical admixtures on hydration of composite cementitious systems.


2011 ◽  
Vol 99-100 ◽  
pp. 420-425 ◽  
Author(s):  
Qian Rong Yang ◽  
Xiao Qian Wang ◽  
Hui Ji

The strength, expansion and amount of scaling of concrete with compound mineral admixture (CMA) from steel slag, granulated blast furnace slag and fly ash were studied. The result shows that damage by crystallization press from sulfate attack when concrete was exposed to sulfate environments under wetting–drying alternation is much larger than that from sulfate chemical attack. Adding CMA to concrete could reduce the damage from expansion of concrete caused by sulfate chemical attack, but the resistance of concrete to damage by crystallization press from sulfate attack was remarkably reduced.


2019 ◽  
Vol 967 ◽  
pp. 205-213
Author(s):  
Faiz U.A. Shaikh ◽  
Anwar Hosan

This paper presents the effect of nanosilica (NS) on compressive strength and microstructure of cement paste containing high volume slag and high volume slag-fly ash blend as partial replacement of ordinary Portland cement (OPC). Results show that high volume slag (HVS) cement paste containing 60% slag exhibited about 4% higher compressive strength than control cement paste, while the HVS cement paste containing 70% slag maintained the similar compressive strength to control cement paste. However, about 9% and 37% reduction in compressive strength in HVS cement pastes is observed due to use of 80% and 90% slag, respectively. The high volume slag-fly ash (HVSFA) cement pastes containing total slag and fly ash content of 60% exhibited about 5%-16% higher compressive strength than control cement paste. However, significant reduction in compressive strength is observed in higher slag-fly ash blends with increasing in fly ash contents. Results also show that the addition of 1-4% NS improves the compressive strength of HVS cement paste containing 70% slag by about 9-24%. However, at higher slag contents of 80% and 90% this improvement is even higher e.g. 11-29% and 17-41%, respectively. The NS addition also improves the compressive strength by about 1-59% and 5-21% in high volume slag-fly ash cement pastes containing 21% fly ash+49%slag and 24% fly ash+56%slag, respectively. The thermogravimetric analysis (TGA) results confirm the reduction of calcium hydroxide (CH) in HVS/HVSFA pastes containing NS indicating the formation of additional calcium silicate hydrate (CSH) gels in the system. By combining slag, fly ash and NS in high volumes e.g. 70-80%, the carbon footprint of cement paste is reduced by 66-76% while maintains the similar compressive strength of control cement paste. Keywords: high volume slag, nanosilica, compressive strength, TGA, high volume slag-fly ash blend, CO2 emission.


2011 ◽  
Vol 295-297 ◽  
pp. 165-169
Author(s):  
Guan Guo Liu ◽  
Jing Ming ◽  
Xiong Wen Zhang ◽  
Ai Bin Ma

Sulfate attack is one of several chemical and physical mechanisms of concrete deterioration. In actual situation, concrete structures always suffer from the coupled effects of multifactor such as wet-dry cycle and sulfate attack when exposed to tidal area or groundwater level change environment. Partial replacement of cement with mineral admixture is one of the efficient methods for improving concrete resistance against sulfate attack. In this regard, the resistance of concrete with fly ash and slag to sulfate attack was investigated by wet-dry cycle method. The degree of sulfate attack on specimens after different cycles was observed using scanning electron microscopy. The results of compressive strength and percentage of compressive strength evolution factor at various cycling times show an increase in the sulfate resistance of concrete with 60% of fly ash and slag than that only with 40% fly ash. The microstructural study indicates that the primary cause of deterioration of concrete under wet-dry cycle condition is swelling of the sulfate crystal rather chemical attack.


2013 ◽  
Vol 539 ◽  
pp. 55-59
Author(s):  
Yi Chen ◽  
Wu Yao ◽  
Dan Jin

Mineral additions such as fly ash and silica fume are industrial by products, and play an important role in properties improvement for construction materials. In this work, the shrinkage of cement paste blended with fly ash and silica fume by different substitute ratio was studied. Pore structures of specimens at different ages were determined by mercury intrusion porosimetry (MIP) and shrinkage deformation was measured by standard shrinkage tests. The effects of mineral addtions on shrinkage were discussed. The results show that the fly ash was significantly effective on shrinkage at early ages. Based on the research, several suitable advices were offered to optimize the performances of materials and reduce the shrinkage.


2015 ◽  
Vol 27 (8) ◽  
pp. 477-486 ◽  
Author(s):  
Kaiwei Liu ◽  
Min Deng ◽  
Liwu Mo ◽  
Jinhui Tang

2013 ◽  
Vol 377 ◽  
pp. 74-79
Author(s):  
Chang Cheng Li ◽  
Fu Jie Jia ◽  
Xu Nan Wu

A low temperature sulfate attack research was carried out to investigate the effects of fly ash on thaumasite form of sulfate attack (TSA) in cement-based materials. Cement-limestone-fly ash samples were immerged in 5% magnesium sulfate solution at (5±2) oC. The appearance of samples was observed, and strength was also tested. Besides, the corrosion products were analyzed by infrared spectrum (IR) and X-ray diffraction (XRD) methods. Cement was equally replaced by fly ash with 20%, 30%, and 50% proportions. The results show that: Effects of fly ash on TSA were closely related to the composition, content and fineness of fly ash. Fly ash with an activity index larger than 80% could improve the resistance to TSA in cement-based materials when the replacement reached 50% while fly ash only played a minor role in early stage with 20%-30% content.


2012 ◽  
Vol 535-537 ◽  
pp. 1735-1738 ◽  
Author(s):  
Yan Li ◽  
Dao Sheng Sun ◽  
Xiu Sheng Wu ◽  
Ai Guo Wang ◽  
Wei Xu ◽  
...  

This paper reports the drying shrinkage and compressive strength results of cement pastes with fly ash and silica fume. In this study, Portland cement (PC) was used as the basic cementitious material. Fly ash (FA) and silica fume (SF) were used as cement replacement materials at levels of 0%, 5%, 10%, and 15% , 40%, 35%, 25%, and 15% by weight of the total cementitious material, respectively. The water/cement (PC + FA + SF) ratios (w/c) was 0.28 by weight. The samples produced from fresh pastes were demoulded after a day; then they were cured at 20 ±1°C with 50 ± 3% relative humidity (RH) until the samples were used for drying shrinkage and compressive strength measurement at various ages. The results show that drying shrinkage and compressive strength increase with increasing SF content, and the optimum composition of blended cement pastes is the cement paste with 30% fly ash and 10% silica fume, which possesses lower drying shrinkage values than that of plain cement paste and higher early age strength than that of blended cement pastes with fly ash. Furthermore, a linear relationship is established between compressive strength and drying shrinkage. By comparing the development of compressive strength and the drying shrinkage deformations, it appears possible to predict the drying shrinkage according to the acquired compressive strength.


2001 ◽  
Vol 678 ◽  
Author(s):  
Angus P. Wilkinson ◽  
Cora Lind ◽  
Stuart R. Stock ◽  
Kimberly E. Kurtis ◽  
Nikhila Naik ◽  
...  

AbstractThe use of energy dispersive X-ray diffraction (EDXRD) to produce 1 D maps of the phases present inside both an alumina-aluminum test specimen and a 1.0 cm diameter cylinder of type I portland cement paste is discussed. The surface of the cement paste sample was found to be rich in calcium carbonate and deficient in portlandite relative to the bulk. After 7 days exposure to 1000 ppm Na2SO4 there was no evidence for the formation of a surface layer rich in crystalline sulfate containing phases. EDXRD appears to be a powerful tool for the study of sulfate attack on portland cements.


2015 ◽  
Vol 732 ◽  
pp. 385-388
Author(s):  
Pavel Padevět ◽  
Petr Bittnar

The paper discusses the creep cement pastes with addition of fly ash. The evolution of the creep was observed in age of one year, for length one month. The size of the creep is influenced by the amount the creep physically bound water. The material properties depend on the ratio of components from which the cement paste is composed. The paper presents the results of creep measurement for the ratio of cement and fly ash 70:30, 60:40 and 50:50. The basic creep and creep of the saturated cement paste were calculated from measurements.


Sign in / Sign up

Export Citation Format

Share Document