scholarly journals Comparison of Ultrasonic Non-Contact Air-Coupled Techniques for Characterization of Impact-Type Defects in Pultruded GFRP Composites

Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1058
Author(s):  
Aadhik Asokkumar ◽  
Elena Jasiūnienė ◽  
Renaldas Raišutis ◽  
Rymantas Jonas Kažys

This article compares different air-coupled ultrasonic testing methods to characterize impact-type defects in a pultruded quasi-isotropic glass fiber-reinforced plastic (GFRP) composite plate. Using the air-coupled transducers, comparisons among three methods were performed, namely, bulk-wave through transmission, single-side access using guided waves, and ultrasonic-guided wave tomography. The air coupled through transmission technique can determine the size and shape of impact-type defects with a higher resolution, but with the consequence of time consumption and, more importantly, the necessity of access to both sides of the sample. The guided wave technique on the other hand, allows a single-side inspection and is relatively fast. It can be used to determine the size of the defect using ultrasonic B-scan, but the exact shape of the defect will be compromised. Thus, in this article, to determine the shape of the defect, application of the parallel beam tomographic reconstruction technique using guided Lamb waves is demonstrated. Furthermore, a numerical finite element simulation was performed to study the effects of guided wave propagation in the composite sample and interaction with the internal defect. Lastly, the results from the experiments of different techniques were compared according to possibilities of defect sizing and determination of its shape.

2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Luca De Marchi ◽  
Emanuele Baravelli ◽  
Giampaolo Cera ◽  
Nicolò Speciale ◽  
Alessandro Marzani

To improve the defect detectability of Lamb wave inspection systems, the application of nonlinear signal processing was investigated. The approach is based on a Warped Frequency Transform (WFT) to compensate the dispersive behavior of ultrasonic guided waves, followed by a Wigner-Ville time-frequency analysis and the Hough Transform to further improve localization accuracy. As a result, an automatic detection procedure to locate defect-induced reflections was demonstrated and successfully tested by analyzing numerically simulated Lamb waves propagating in an aluminum plate. The proposed method is suitable for defect detection and can be easily implemented for real-world structural health monitoring applications.


2011 ◽  
Vol 94-96 ◽  
pp. 1585-1589 ◽  
Author(s):  
Hai Yan Zhang ◽  
Jian Bo Yu ◽  
Xian Hua Chen

The detection of localized defects such as cracks and corrosion in pipes using guided waves has been shown to be an effective nondestructive evaluation technique for structural health monitoring (SHM). Cross borehole tomography in seismology is introduced into the guided wave inspection of a pipe when the pipe is considered as an unwrapped plate. Guided waves propagating in pipe with a crack defect are simulated using the finite element model and the arrival times for the fastest modes are extracted and sent to the tomographic algorithm. The tomographic reconstruction is based on the simultaneous iterative reconstruction technique (SIRT). For some cylindrical shell geometries such as stacked storage tanks, access to the entire circumference of the structure could be impractical or even impossible, three different image fusion techniques are used to enhance the image equality reconstructed from the incomplete datasets. The results show that the defect is more pronounced after imaging fusion.


2007 ◽  
Vol 85 (7) ◽  
pp. 707-731 ◽  
Author(s):  
J Sadler ◽  
R Gr Maev

The subject of Lamb waves contains a vast field of literature comprising many individual topics, with the current focus being the effective creation and use of Lamb waves in the fields of material characterization and nondestructive evaluation (NDE). This review chooses to focus on the more recent literature dealing with Lamb waves, giving introductions to a variety of topics. Because of the large amount of literature dealing with Lamb waves, many of the sections of this paper could themselves be expanded into their own literature review. This review begins with a brief introduction of Lamb waves comparing them to the acoustic bulk wave, and Rayleigh wave, and outlines the physics of a guided wave. It discusses the advantages of using guided waves, and theoretical techniques to model Lamb waves. In addition, the review discusses some of the various methods for the detection and creation of Lamb waves; techniques to detect, identify, and extract the mode from the acoustic signal; the use of Lamb waves in material characterization; flaw detection and flaw measurement; and finally examines the scattering of Lamb waves at plate ends and joints. While much of this work is experimentally based in nature, this review has attempted to also include theoretical work when possible. PACS Nos.: 43.90.+v, 81.70.Cv


2011 ◽  
Vol 282-283 ◽  
pp. 574-578
Author(s):  
Hai Yan Zhang ◽  
Jian Bo Yu ◽  
Xian Hua Chen

Localized flaws such as corrosions in petroleum pipelines often cause fragility, impairing integrity and shortening service lifetime of the structures. There has been much interest recently in monitoring the integrity of the pipe structures. Ultrasonic guided waves provide a highly efficient technique for rapid pipe inspection because they can be made to propagate significant distances in pitch-catch configurations. Crosshole tomographic geometry is formed in such pitch-catch configurations when transmits and receivers are respectively laid along two parallel circumferential belts around the pipe. Considering the pipe as an unwrapped plate, we investigate the adapation of the tomographic reconstruction in seismology to the guided wave inspection of a pipe. Various effects such as transducer arrangement, mesh precision, sampling interval and iterative algorithm on tomographic reconstruction are analyzed. The results provide a theoretical basis for quantitative detection of pipeline flaw using guided wave tomography.


Author(s):  
Kuan Ye ◽  
Kai Zhou ◽  
Ren Zhigang ◽  
Ruizhe Zhang ◽  
Chunsheng Li ◽  
...  

The power transmission tower’s ground electrode defect will affect its normal current dispersion function and threaten the power system’s safe and stable operation and even personal safety. Aiming at the problem that the buried grounding grid is difficult to be detected, this paper proposes a method for identifying the ground electrode defects of transmission towers based on single-side multi-point excited ultrasonic guided waves. The geometric model, ultrasonic excitation model, and physical model are established, and the feasibility of ultrasonic guided wave detection is verified through the simulation and experiment. In actual inspection, it is equally important to determine the specific location of the defect. Therefore, a multi-point excitation method is proposed to determine the defect’s actual position by combining the ultrasonic guided wave signals at different excitation positions. Besides, the precise quantification of flat steel grounding electrode defects is achieved through the feature extraction-neural network method. Field test results show that, compared with the commercial double-sided excitation transducer, the single-sided excitation transducer proposed in this paper has a lower defect quantization error in defect quantification. The average quantization error is reduced by approximately 76%.


2021 ◽  
Vol 11 (3) ◽  
pp. 1071
Author(s):  
Davide Bombarda ◽  
Giorgio Matteo Vitetta ◽  
Giovanni Ferrante

Rail tracks undergo massive stresses that can affect their structural integrity and produce rail breakage. The last phenomenon represents a serious concern for railway management authorities, since it may cause derailments and, consequently, losses of rolling stock material and lives. Therefore, the activities of track maintenance and inspection are of paramount importance. In recent years, the use of various technologies for monitoring rails and the detection of their defects has been investigated; however, despite the important progresses in this field, substantial research efforts are still required to achieve higher scanning speeds and improve the reliability of diagnostic procedures. It is expected that, in the near future, an important role in track maintenance and inspection will be played by the ultrasonic guided wave technology. In this manuscript, its use in rail track monitoring is investigated in detail; moreover, both of the main strategies investigated in the technical literature are taken into consideration. The first strategy consists of the installation of the monitoring instrumentation on board a moving test vehicle that scans the track below while running. The second strategy, instead, is based on distributing the instrumentation throughout the entire rail network, so that continuous monitoring in quasi-real-time can be obtained. In our analysis of the proposed solutions, the prototypes and the employed methods are described.


2000 ◽  
Author(s):  
Won-Bae Na ◽  
Tribikram Kundu ◽  
Mohammad R. Ehsani

Abstract The feasibility of detecting interface degradation and separation of steel rebars in concrete beams using Lamb waves is investigated in this paper. It is shown that Lamb waves can easily detect these defects. A special coupler between the steel rebar and ultrasonic transducers has been used to launch non-axisymmetric guided waves in the steel rebar. This investigation shows that the Lamb wave inspection technique is an efficient and effective tool for health monitoring of reinforced concrete structures because the Lamb wave can propagate a long distance along the reinforcing steel bars embedded in concrete as the guided wave and is sensitive to the interface debonding between the steel rebar and concrete.


Author(s):  
Zhanjun Feng ◽  
Weibin Wang ◽  
Wenqiang Tong ◽  
Keyi Yuan ◽  
Zandong Han ◽  
...  

Large storage tanks for oil storage are widely used in petrochemical industry. Corrosion in the tank floor and wall is a serious threat for environmental and economic safety. Owing to their unique potential for long-range, in-plane propagation through plates, Ultrasonic Guided Waves (UGW) offer an obvious solution in the development of an on-board structural health-monitoring (SHM) system, providing assessment of structural integrity for storage tank floor and wall defect in-situ inspection. This paper presents this application by focusing on their propagation through the plate structure. Even very small mechanical discontinuity or geometry change of plate structure, e.g. corrosion defect on tank floor, will influence the propagation characteristic of the guided waves. These effects are measured as mode changes, frequency shifts or filtering, reflection and diffraction of new ultrasonic modes or overall distortion of the original ultrasonic signals. By capturing and analyzing these changes we can deduct the corrosion defect of the tank floor and wall which causes the ultrasonic signal change and interactions. The T/R transducers are required to be attached on the outer edge of the tank floor and outer surface of the tank wall. The technique is developed based on the Lamb wave transmission tomography. Starting from the dispersion curve and choosing the appropriate wave mode, the propagation of the guided waves in the tank floor and wall has been carried out through numerical simulation and the experiment has been conducted for verification using the full-size oil storage tank. The low frequency guided waves can propagate longer distance in planar and tubular structures. The later has been already used in pipeline inspection. The complexity of the application of ultrasonic guided wave in tank floor inspection lies in the object containing multiple lap joint welds along the large diameter of the tank (up to 100 m) and the complicated reconstruction of the two-dimensional defect distribution information. The main scope of the investigation was the application of the ultrasonic transmission tomography for localization of non-uniformities of inside tank floor, taking into account ultrasonic signal losses due to the loading with oil on the top and ground support at the bottom for the tank floor, and the loading with oil inside for the vertical tank wall.


2021 ◽  
Author(s):  
Chengwei Zhao ◽  
Sunia Tanweer ◽  
Jian Li ◽  
Min Lin ◽  
Xiang Zhang ◽  
...  

Abstract Nonlinear ultrasonic guided waves have superior sensitivity of the early fatigue damage. This paper investigates the analysis of the second harmonics of Lamb waves in a free boundary aluminum plate, and the internal resonance conditions between the Lamb wave primary modes and the second harmonics. The Murnaghan’s model is implemented in a finite element (FE) analysis to describe the hyperelastic constitutive relation for nonlinear acoustic modeling. The second harmonics of s0 mode are actuated by a 60kHz Hanning-windowed tone burst. A guided wave signal processing platform is developed for tomographic imaging. The different stages of fatigue are reflected by the changes of third-order elastic constants (TOECs) in Murnaghan’s model. The reconstructed damage locations match well with the actual ones cross different degrees and depths of fatigue.


Sensors ◽  
2019 ◽  
Vol 19 (24) ◽  
pp. 5443 ◽  
Author(s):  
Anurag Dhutti ◽  
Saiful Asmin Tumin ◽  
Wamadeva Balachandran ◽  
Jamil Kanfoud ◽  
Tat-Hean Gan

High-temperature (HT) ultrasonic transducers are of increasing interest for structural health monitoring (SHM) of structures operating in harsh environments. This article focuses on the development of an HT piezoelectric wafer active sensor (HT-PWAS) for SHM of HT pipelines using ultrasonic guided waves. The PWAS was fabricated using Y-cut gallium phosphate (GaPO4) to produce a torsional guided wave mode on pipes operating at temperatures up to 600 °C. A number of confidence-building tests on the PWAS were carried out. HT electromechanical impedance (EMI) spectroscopy was performed to characterise piezoelectric properties at elevated temperatures and over long periods of time (>1000 h). Laser Doppler vibrometry (LDV) was used to verify the modes of vibration. A finite element model of GaPO4 PWAS was developed to model the electromechanical behaviour of the PWAS and the effect of increasing temperatures, and it was validated using EMI and LDV experimental data. This study demonstrates the application of GaPO4 for guided-wave SHM of pipelines and presents a model that can be used to evaluate different transducer designs for HT applications.


Sign in / Sign up

Export Citation Format

Share Document