scholarly journals Tribological and Thermo-Mechanical Properties of TiO2 Nanodot-Decorated Ti3C2/Epoxy Nanocomposites

Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2509
Author(s):  
Yalin Zhang ◽  
Xuzhao He ◽  
Miao Cao ◽  
Xiaojun Shen ◽  
Yaru Yang ◽  
...  

The micromorphology of fillers plays an important role in tribological and mechanical properties of polymer matrices. In this work, a TiO2-decorated Ti2C3 (TiO2/Ti3C2) composite particle with unique micro-nano morphology was engineered to improve the tribological and thermo-mechanical properties of epoxy resin. The TiO2/Ti3C2 were synthesized by hydrothermal growth of TiO2 nanodots onto the surface of accordion-like Ti3C2 microparticles, and three different decoration degrees (low, medium, high density) of TiO2/Ti3C2 were prepared by regulating the concentration of TiO2 precursor solution. Tribological test results indicated that the incorporation of TiO2/Ti3C2 can effectively improve the wear rate of epoxy resin. Among them, the medium density TiO2/Ti3C2/epoxy nanocomposites gained a minimum wear rate. This may be ascribed by the moderate TiO2 nanodot protuberances on the Ti3C2 surface induced a strong mechanical interlock effect between medium-density TiO2/Ti3C2 and the epoxy matrix, which can bear a higher normal shear stress during sliding friction. The morphologies of worn surfaces and wear debris revealed that the wear form was gradually transformed from fatigue wear in neat epoxy to abrasive wear in TiO2/Ti3C2/epoxy nanocomposites. Moreover, the results of thermo-mechanical property indicated that incorporation of TiO2/Ti3C2 also effectively improved the storage modulus and glass transition temperature of epoxy resin.

2019 ◽  
Vol 28 (6) ◽  
pp. 388-397
Author(s):  
Jai Inder Preet Singh ◽  
Sehijpal Singh ◽  
Vikas Dhawan

In this work, partially biodegradable green composites have been developed with the help of compression molding technique. Jute fibers were selected as a reinforcement and epoxy resin as matrix material. The influence of alkali treatment on various mechanical properties of jute/epoxy composites was investigated, with concentrations ranging from 1%, 3%, 5%, 7%, and 9% NaOH solution. Various test results indicate that with an increase in concentration, tensile and flexural strength increases up to 5% concentration of NaOH, thereafter both the properties decrease, but impact strength increases up to 7% concentration and thereafter decreases. The results of mechanical characterizations were further validated through the study of morphology with scanning electron microscopy and Fourier transform infrared analysis. The optimal concentration of 5% concentration for alkali treatment of fibers have been suggested.


Author(s):  
Darunee Aussawasathien ◽  
Erol Sancaktar

Electrospun polyacrylonitrile (PAN) fiber precursor based Carbon Nanofiber (CNF) mats were produced and impregnated with epoxy resin. The mechanical properties of as-prepared nanofibers in the mat and short fiber filled epoxy nanocomposite forms were determined to demonstrate the effect of fiber aspect ratio and interconnecting network on those properties. Our experimental results reveal that epoxy nanocomposites containing Electrospun Carbon Nano Fibers (ECNF) with high fiber aspect ratio and high interconnecting network in the non-woven mat form yield better mechanical properties than those filled with short ECNFs. The ECNF mat in epoxy nanocomposites provides better homogeneity, more interlocking network, and easier preparation than short ECNFs. Mechanical properties of ECNF mat-epoxy nanocomposites, which we obtained using tensile and flexural tests, such as stiffness and modulus increased, while toughness and flexural strength decreased, compared to the neat epoxy resin. Dynamic Mechanical Analysis (DMA) results showed, higher modulus for ECNF mat-epoxy nanocomposites, compared to those for neat epoxy resin and short ECNF-epoxy nanocomposites. The epoxy nanocomposites had high modulus, even though the glass transition temperature, Tg values dropped at some extents of ECNF mat contents when compared with the neat epoxy resin. The cure reaction was retarded since the amount of epoxy and hardener decreased at high ECNF contents together with the hindering effect of the ECNF mat to the diffusion of epoxy resin and curing agent, leading to low crosslinking efficiency.


e-Polymers ◽  
2006 ◽  
Vol 6 (1) ◽  
Author(s):  
Newton Luiz Dias Filho ◽  
Hermes Adolfo de Aquino

AbstractNon-isothermal dielectric analysis (DEA) and differential scanning calorimetry (DSC) techniques were used to study the epoxy nanocomposites prepared by reacting 1,3,5,7,9,11,13,15-octa[dimethylsiloxypropylglycidylether] pentaciclo [9.5.1.13,9.15,15 .17,13] octasilsesquioxane (ODPG) with methylenedianiline (MDA). Loss factor (ε”) and activation energy were calculated by DEA. The relationships between the loss factor, the activation energy, the structure of the network, and the mechanical properties were investigated. Activation energies determined by DEA and DSC, heat of polymerization, fracture toughness and tensile modulus show the same profile for mechanical properties with respect to ODPG content.


Author(s):  
Yuanxin Zhou ◽  
Farhana Pervin ◽  
Jamese Hamilton ◽  
Shaik Jeelani

In the present investigation, a high intensity ultrasonic liquid processor was used to obtain a homogeneous molecular mixture of epoxy resin and K-10 MMT clay. The clay were infused into the part A of SC-15 (Diglycidylether of Bisphenol A) through sonic cavitations and then mixed with part B of SC-15 (cycloaliphatic amine hardener) using a high speed mechanical agitator. The trapped air and reaction volatiles were removed from the mixture using high vacuum. Flexural tests were performed on unfilled, 1wt. %, 2wt. %, 3 wt. % and 4 wt.% clay filled SC-15 epoxy to identify the loading effect on mechanical properties of the composites. The flexural test results indicate that 2.0 wt% loading of clay in epoxy resin showed the highest improvement in strength as compared to the neat systems. After that, the nanophased matrix with 2 wt.% clay is then utilized in a Vacuum Assisted Resin Transfer Molding (VARTM) set up with satin weave carbon preforms to fabricate laminated composites. The resulting structural composites have been tested under flexural and tensile loads to evaluate mechanical properties. 13.5% improvement in flexural strength and 5.8% improvement in tensile strength were observed in carbon/epoxy nanocomposite. TGA and DMA tests were also conducted to observe the thermal stability of the structural composite.


2016 ◽  
Vol 849 ◽  
pp. 590-596 ◽  
Author(s):  
Li Yuan Sheng

The NiAl/Cr (Mo,Dy) hypoeutectic alloy was fabricated by rapid solidification. The microstructure and mechanical properties as well as tribological properties for the alloy at different temperatures were investigated. The results revealed that the rapidly solidified NiAl/Cr (Mo,Dy) hypoeutectic alloy was composed of primary NiAl, fine NiAl/Cr (Mo) eutectic lamella, Ni5Dy phase and Cr7Ni3 precipitate. The compression test showed that the rapid solidification improved the mechanical properties of the NiAl/Cr (Mo,Dy) hypoeutectic alloy obviously. The dry sliding test results showed that alloy had excellent tribological properties at about 1073 K, which obtained wear rate of 4.9 10-14m3/m·N and friction coefficient of 0.16 μ. The excellent tribological properties at high temperature may be attributed to the continuous and intact protecting lubricant film which was composed of amorphous, Cr2O3 and Al2O3 nanoparticles. Between 700 K to 900 K, the alloy demonstrated bad tribological properties, especially the high wear rate, which may be ascribed to the softening of NiAl and Cr (Mo) phases.


Author(s):  
J. K. Lancaster

The influence of some mechanical properties of polymers—hardness, elastic modulus, breaking strength and elongation to break—on their wear rates against a metal counterface has been determined at various temperatures. Many polymers exhibit a minimum wear rate at a particular temperature. The relative proportion of plastic to elastic deformation, characterized by the ratio of hardness to elastic modulus, is almost independent of temperature for most polymers. Variations in this ratio are therefore insufficient to explain the observed changes in wear rate. In contrast, the product of the breaking strength S and the elongation to break is a very significant parameter. In conditions of abrasive wear, there is an approximately linear relationship between the room temperature values of 1/ Sε for a large number of polymers and their wear rates. In steady-state sliding conditions, however, this relationship no longer applies because of the complicating effects of transfer of polymer to the counterface.


RSC Advances ◽  
2014 ◽  
Vol 4 (76) ◽  
pp. 40132-40140 ◽  
Author(s):  
D. Duraibabu ◽  
M. Alagar ◽  
S. Ananda Kumar

The objective of the present work is to synthesize 1,4′-bis (4-amine-phenoxy) sulphone benzene epoxy resin (TGBAPSB) via 1,4′-bis (4-amine-phenoxy) sulphone benzene (BAPSB) and epichlorohydrin in order to obtain tetra functional epoxy with improved properties.


2010 ◽  
Vol 129-131 ◽  
pp. 1248-1251 ◽  
Author(s):  
Qing Ming Jia ◽  
Shao Yun Shan ◽  
Li Hong Jiang ◽  
Ya Ming Wang

Size, shape and processing of the inorganic fillers are important for improving properties of nanocomposites. In this paper, a novel nanofiller containing mesoporous silica(MS) and fibrous sepiolite(SE) was prepared by in situ deposition method. EP/MS-SE nanocomposite was obtained by adding MS-SE to epoxy resin(EP) matrix. Morphologies and mechanical properties of the new ternary nanocomposite were investigated. For purpose of comparison, the corresponding binary nanocomposites, i.e., EP modified with either MS or SE, were tested as well. The test results of mechanical properties show that MS improves the strength of EP and SE obviously enhances the toughness of EP, but oM-MS exhibits synergistic effect on toughening and reinforcing of EP at the same time. Dynamic mechanical analysis revealed that the glass transition temperature and storage modulus of the EP/MS-SE nanocomposite was higher than those of pure EP.


2019 ◽  
Vol 32 (4) ◽  
pp. 429-443 ◽  
Author(s):  
Hongyu Wang ◽  
Shichao Li ◽  
Yuhuan Yuan ◽  
Xin Liu ◽  
Tao Sun ◽  
...  

A liquid oxygen-compatible epoxy resin is successfully prepared by changing the epoxy/amine equivalent ratio (SR) of a phosphorus-containing epoxy resin. The liquid oxygen impact test results showed that the modified resin was compatible with liquid oxygen only when the SR was 0.8. The mechanical properties at 90 K showed that the strain energy and impact toughness reached the maximum when the SR was 0.8, which suggested that the reduced rigidity might be beneficial to improve the liquid oxygen compatibility of the polymer. The thermomechanical and thermal results showed that the cross-linking density and thermal stability was proportional to SR. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy analysis showed that the P=O group in the resin decomposed into phosphoric oxidative solids and P–N intermediates to inhibit the resin from decomposing and contacting with liquid oxygen during impact. Overall, this study provides a new idea for the design of liquid oxygen-compatible epoxy resin.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2866
Author(s):  
Young-Min Choi ◽  
Seon-Ae Hwangbo ◽  
Tae-Geol Lee ◽  
Young-Bog Ham

This study investigated the effects of the packing density and particle size distribution of TiO2 nanoparticles on the mechanical properties of TiO2–epoxy nanocomposites (NCs). The uniform dispersion and good interfacial bonding of TiO2 in the epoxy resin resulted in improved mechanical properties with the addition of nanoparticles. Reinforcement nano-TiO2 particles dispersed in deionized water produced by three different ultrasonic dispersion methods were used; the ultrasonication effects were then compared. The nano-TiO2 suspension was added at 0.5–5.0 wt.%, and the mechanical and thermal properties of TiO2–epoxy NCs were compared using a universal testing machine, scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FT-IR), and differential scanning calorimetry (DSC). The tensile strength of the NCs was improved by the dispersion strengthening effect of the TiO2 nanoparticles, and focused sonication improved the tensile strength the most when nano-TiO2 suspensions with a particle size of 100 nm or smaller were used. Thus, the reinforcing effect of TiO2 nanoparticles on the epoxy resin was observed, and the nano-TiO2 suspension produced by focused sonication showed a more distinct reinforcing effect.


Sign in / Sign up

Export Citation Format

Share Document