mmt clay
Recently Published Documents


TOTAL DOCUMENTS

82
(FIVE YEARS 13)

H-INDEX

17
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Serap Kavlak

Functional amide based copolymer/clay nanocomposites were synthesized by in situ radical-initiated interlamellar copolymerization from acrylamide and citraconic anhydride monomers in the presence of organically modified montmorillonite (O-MMT) clay. To investigate...


2021 ◽  
Author(s):  
Chakradhar V.P. Komanduri

Montmorillonite (MMT) clay was disseminated into Unsaturated Polyester (UP) and Epoxy blend systems in diverse weight ratios namely, 0, 1, 2, 3, and 5% to prepare Epoxy/UP/MMT clay composite. The specimen was characterized by thermal and chemical analysis. Homogeneous mixture of blended composites is obtained through mechanical stirring and ultrasonication processes. The testing of thermal and chemical properties was performed. Evidence acquired from the above tests indicate that Epoxy reinforced with UP and further strengthened with MMT clay enhanced the thermal and chemical properties of the composite to a considerable extent. The purpose of this study was to recognize an appropriate composite offering a stronger material with enhanced performance; that is suitable for diverse industrial uses.


Water ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3206
Author(s):  
Nisha Choudhary ◽  
Virendra Kumar Yadav ◽  
Krishna Kumar Yadav ◽  
Abdulaziz Ibrahim Almohana ◽  
Sattam Fahad Almojil ◽  
...  

Textile industries are the largest consumer of synthetic dyestuff compounds and consequently, they are the prime contributor of colored organic contaminants to the environment. The dye compounds when released in soil or freshwater resources such as rivers, cause a potential hazard to living beings due to their toxic, allergic and carcinogenic nature. Current conventional treatment methods for removal or degradation of such dyestuff materials from water systems are not sufficient, and therefore, there is an immediate need to find efficient and eco-friendly approaches. In this regard, nanotechnology can offer an effective solution to this problem. In the present work, montmorillonite/silver nanocomposite (MMT/Ag nanocomposite) is developed through green synthesis methods using naturally occurring montmorillonite (MMT) clay and silver nanoparticles. The material was characterized by using a particle size analyzer (PSA), UV/Visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscope (FE-SEM), energy dispersive X-ray (EDX) spectroscopy and a Brunner–Emmett–Teller (BET) surface area analyzer. The adsorption efficiency of the nanocomposite and per cent removal of methylene blue (MB) was investigated by using a batch system.


2021 ◽  
pp. 152808372110208
Author(s):  
Handan Palak ◽  
Beste Aktürk ◽  
Burçak Karagüzel Kayaoğlu ◽  
İkilem Göcek

In this study, the layered nanoclay was employed to impart ultraviolet (UV) protection functionality for electrospinning thermoplastic polyurethane (TPU) nanofibrous mats. This study is among the very rare studies which uses Montmorillonite (MMT) clay for UV protection. Due to its known UV protection property, titanium dioxide (TiO2) was used solely for comparison with MMT clay and as a blend with MMT for investigation of its synergetic effect with nanoclay. The morphology and chemical structure of virgin and nanoclay-loaded nanofibers were characterized via Scanning Electron Microscopy (SEM) and Fourier Transform Infared Spectroscopy (FTIR). Incorporation of TiO2 significantly improved UV protection performance of TPU electrospun nanofibers, as expected. UV protection factor (UPF) of electrospun mats including nanoclay was found as high as that of the ones including TiO2.Therefore, the study revealed that the clay has a considerable potential for producing nanofibrous layers with UV protection. Such a nanocomposite structure could be potentially employed as a layer in a multilayered technical textile such as tents, sun protective covers for automobiles, blind curtains, etc. This study proposed an eco-friendly and viable alternative to TiO2 which is a well-known material for its UV protection.


Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 376
Author(s):  
Su-Mei Huang ◽  
Jiunn-Jer Hwang ◽  
Hsin-Jiant Liu ◽  
An-Miao Zheng

In this study, the montmorillonite (MMT) clay was modified with NH4Cl, and then the structures were exfoliated or intercalated in a polylactic acid (PLA) matrix by a torque rheometer in the ratio of 0.5, 3.0, 5.0 and 8.0 wt%. X-ray diffraction (XRD) revealed that the organic modified-MMT(OMMT) was distributed successfully in the PLA matrix. After thermal pressing, the thermal stability of the mixed composites was measured by a TGA. The mixed composites were also blended with OMMT by a co-rotating twin screw extruder palletizing system, and then injected for the ASTM-D638 standard specimen by an injection machine for measuring the material strength by MTS. The experimental results showed that the mixture of organophilic clay and PLA would enhance the thermal stability. In the PLA mixed with 3 wt% OMMT nanocomposite, the TGA maximum decomposition temperature (Tmax) rose from 336.84 °C to 339.08 °C. In the PLA mixed with 5 wt% OMMT nanocomposite, the loss of temperature rose from 325.14 °C to 326.48 °C. In addition, the elongation rate increased from 4.46% to 10.19% with the maximum loading of 58 MPa. After the vibrating hydrolysis process, the PLA/OMMT nanocomposite was degraded through the measurement of differential scanning calorimetry (DSC) and its Tg, Tc, and Tm1 declined.


2020 ◽  
Vol 998 ◽  
pp. 255-260
Author(s):  
Rey Mark A. Ramos ◽  
Ruth R. Aquino ◽  
Marvin S. Tolentino ◽  
Elisa G. Eleazar ◽  
Blessie A. Basilia

Polycaprolactone (PCL) is a hydrophobic, semi-crystalline polymer that has been broadly applied in long term implants, drug release applications, and in the tissue engineering field due to its availability, relatively inexpensive price and suitability for modification. Organo-montmorillonite (O-MMT) clay has been extensively used for various polymer-nanocomposite studies and widely used as adsorbent due to its high specific surface area. Most polymer clay nanocomposites are involved in biomedical applications such as in drug delivery systems and wound healing. In this study, O-MMT was incorporated to PCL via solvent casting, which resulted into film membranes that were characterized to identify its surface morphology, chemical structure, wettability, mechanical property, pore size, and antibacterial properties upon its varying concentrations. The SEM and FTIR results indicated the presence of both PCL and O-MMT within the membrane. The mechanical properties of the film membranes showed an improvement upon reaching an optimal point. An increase in pore size was determined relative to its hydrophilicity. The film membrane showed an antibacterial activity only at the higher concentrations of the O-MMT using the S. aureus strain. As such, the results showed that there is an improvement in the mechanical, wettability, water absorption and antibacterial properties of the PCL with the incorporation of the O-MMT, making it a viable candidate dressing material for wound healing.


Silicon ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1751-1760 ◽  
Author(s):  
P. Ramesh ◽  
B. Durga Prasad ◽  
K. L. Narayana
Keyword(s):  

2019 ◽  
Vol 8 (3) ◽  
pp. 3985-3991

The Montmorillonite (MMT) clay toughened epoxy (85%) / unsaturated polyester (15%) polymer blend system is developed. Studies on Mechanical, Thermal and Damping properties are conducted to determine the effect of the variations of MMT clay on the polymer blend. The Mechanical property studies showed that 3% clay reinforced polymer blend system exhibited optimum results, while the Damping property studies showed that 4% clay reinforced polymer blend system exhibited optimum results and Thermal property studies revealed that 5% clay reinforced polymer blend system exhibited optimum results. The prime objective of this work is to validate the obtained experiment results and to identify the best-fit combination. The results are validated by using Design Expert Version 8 Software. Validation of the experimental results, indicate negligible variations with the software generated results. Since different variations of clay percentages are achieved for different properties, a decision table is constructed to determine the best-fit combination suitable for the selected applications.


2019 ◽  
Vol 5 (7) ◽  
pp. 1490-1505 ◽  
Author(s):  
Safi Ur Rehman ◽  
Muhammad Yaqub ◽  
Tariq Ali ◽  
Khan Shahzada ◽  
Sajjad Wali Khan ◽  
...  

This study aims to evaluate the performance of mortars containing locally available Pakistani montmorillonite (Mmt) clay mineral as partial replacement of cement in various curing environments. The local montmorillonite clay in “As is” (20°C) and “heated” (100°C, 200°C, 300°C, 400°C, 500°C, 600°C, 700°C, 800°C, 900°C & 1000°C) conditions was incorporated in mortar cubes as partial replacement of cement. Montmorillonite clay of all the temperatures was replaced by 15%, 20%, 25%, 30% and 35% of cement mass in mortar cubes. The Strength Activity Index (SAI) was calculated to determine the optimum activation temperature for the clay. Compressive strengths of the controlled mix and montmorillonite modified mortars were evaluated under the Sodium Sulfate (SS) (5% solution) and mixed (Sodium Sulfate + Sodium Chloride (SCS)) (5% +3.5% solution) curing environments to study its durability performance. Upon thermal treatment montmorillonite clay showed maximum activation at 800°C temperature. Mortar containing (800°C) calcined montmorillonite clay with 25% cement replacement exhibit competent compression results. Moreover, up on exposure to aggressive environments, montmorillonite clay mortars performed better than the control samples. The mortar cubes exposed to Sulfate environment (SS) were more damaged in compression than that exposed to mixed environment (SCS), for all replacement levels and time exposures.


Sign in / Sign up

Export Citation Format

Share Document