scholarly journals Effect of CeO2 Size on Microstructure, Synthesis Mechanism and Refining Performance of Al-Ti-C Alloy

Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6739
Author(s):  
Yanli Ma ◽  
Taili Chen ◽  
Lumin Gou ◽  
Wanwu Ding

The effects of CeO2 size on the microstructure and synthesis mechanism of Al-Ti-C alloy were investigated using a quenching experiment method. A scanning calorimetry experiment was used to investigate the synthesis mechanism of TiC, the aluminum melt in situ reaction was carried out to synthesize master alloys and its refining performance was estimated. The results show that the Al-Ti-C-Ce system is mainly composed of α-Al, Al3Ti, TiC and Ti2Al20Ce. The addition of CeO2 obviously speeds up the progress of the reaction, reduces the size of Al3Ti and TiC and lowers the formation temperature of second-phase particles. When the size of CeO2 is 2–4 μm, the promotion effect on the system is most obvious. The smaller the size of CeO2, the smaller the size of Al3Ti and TiC and the lower the formation temperature. Al-Ti-C-Ce master alloy has a significant refinement effect on commercial pure aluminum. When the CeO2 size is 2–4 μm, the grain size of commercial pure aluminum is refined to 227 μm by Al-Ti-C-Ce master alloy.

Materials ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 310 ◽  
Author(s):  
Wanwu Ding ◽  
Taili Chen ◽  
Xiaoyan Zhao ◽  
Yan Cheng ◽  
Xiaoxiong Liu ◽  
...  

Al-Ti-C master alloys have been widely investigated by various researchers. However, their refining effectiveness is still severely compromised by the preparation process. In this work, the aluminum melt in-situ reaction was carried out to synthesize the Al-5Ti-0.62C, and its refining performance was estimated. The thermodynamics calculation and differential scanning calorimeter experiment were used to investigate the synthesis mechanism of TiC. Quenching experiment was conducted to explore phase and microstructure transformation of the Al-5Ti-0.62C system. The results show that the main phases of Al-5Ti-0.62C master alloys are α-Al, Al3Ti, and TiC and it has a positive effect on commercial pure aluminum refining. Commercial pure aluminum is completely refined into the fine equiaxed structure by adding 0.3% Al-5Ti-0.62C master alloy. TiC particles mainly distribute in the grain interior and grain boundaries. The excess Ti came from the dissolution of Al3Ti spreading around TiC and finally forming the Ti-rich zone to promote the nucleation of α-Al. The experiments certified that TiC was formed by the reaction between solid C and excess Ti atoms. The main reactions in the Al-5Ti-0.62C system were that solid Al is transferred into liquid Al, and then liquid Al reacted with solid Ti to form the Al3Ti. At last, the release of a lot of heat promotes the formation of TiC which formed by the Ti atoms and solid C.


2014 ◽  
Vol 574 ◽  
pp. 380-385
Author(s):  
Hua Hu ◽  
Zhi Liu Hu ◽  
Liang Jie Wei ◽  
Jian Bao Yin

Al-Ti-B-RE master alloy is an efficient long-term new refiner. Al-Ti-B-RE refiner was prepared by Al-Ti-B master alloy doped with LaF3, La-rich RE carbonate and Ce respectively. This paper studies the effect of different type and mass fraction of RE on the Second Phase Particles distributions and shape in Master Alloys. The addition of RE have a certain effect of refining TiAl3 and TiB2 intermediate phase. Moreover, it prevents aggregation of TiB2 intermediate phase. As the different type and addition of RE has an effect on the microstructure of master alloy, then the reasonable addition of RE is put forward.


2014 ◽  
Vol 900 ◽  
pp. 100-104
Author(s):  
Liang Jie Wei ◽  
Hua Hu ◽  
Zhi Liu Hu ◽  
Yan Jun Zhao

Al-Ti-B master alloy is an efficient and practical aluminum grain refiner. This paper studies the effect of process parameter on the Second Phase Particles distributions and shape in Al-Ti-B Master Alloys by casting of pure titanium particale method. Emphatically studied three factors of feeding order, superheating temperature and reaction time , then the reasonable process parameters are put forward.


2012 ◽  
Vol 535-537 ◽  
pp. 915-918
Author(s):  
Zheng Jun Wang

Al-Ti-B-RE master alloy was prepared by casting of pure Ti. To improve the quality and reduce the cost of α- Al, the Al-Ti-B-RE master alloy was added to α-Al in molten and diluted state. The refining method had the advantages of shorter contact time and better refining effect. The array of the second phase particles was separated and the nucleating rate was greatly increased. Analysis and comparison of the refining effects were by X-ray diffraction (XRD), scanning electron microscopy (SEM) and optical microscopy (OM).The refining experiment showed that the molten and diluted state Al-Ti-B-RE by oneself had better grain refining performance and had obvious advantages over Al-Ti-B in domestic.


Author(s):  
Wenxue Fan ◽  
Hai Hao

Abstract Grain refinement has a significant influence on the improvement of mechanical properties of magnesium alloys. In this study, a series of Al–Ti–C-xGd (x = 0, 1, 2, 3) master alloys as grain refiners were prepared by self-propagating high-temperature synthesis. The synthesis mechanism of the Al–Ti–C-xGd master alloy was analyzed. The effects of Al–Ti–C-xGd master alloys on the grain refinement and mechanical properties of AZ31 (Mg-3Al-1Zn-0.4Mn) magnesium alloys were investigated. The results show that the microstructure of the Al–Ti–C-xGd alloy contains α-Al, TiAl3, TiC and the core–shell structure TiAl3/Ti2Al20Gd. The refining effect of the prepared Al–Ti–C–Gd master alloy is obviously better than that of Al–Ti–C master alloy. The grain size of AZ31 magnesium alloy was reduced from 323 μm to 72 μm when adding 1 wt.% Al–Ti–C-2Gd master alloy. In the same condition, the ultimate tensile strength and elongation of as-cast alloy were increased from 130 MPa, 7.9% to 207 MPa, 16.6% respectively.


2005 ◽  
Vol 475-479 ◽  
pp. 313-316
Author(s):  
Jian Guo Li ◽  
Min Huang ◽  
Zimu Shi ◽  
Dong Yu Liu

The AlTiC master alloy has been prepared in different components to refine 99.8%Al and 99.98%Al, then compared to two typical Al5Ti1B in refining efficiency and the grain nuclear. The result showed that the refining efficiency seemed better if the nucleation of high pure aluminum revealed complexity and variety. It may due to that the latency heterogeneous nucleation was efficient on the whole, consequently accelerated refining efficiency.


2012 ◽  
Vol 217-219 ◽  
pp. 377-381 ◽  
Author(s):  
Ying Long Li ◽  
Fu Rong Cao ◽  
Li Jin

The microstructural characters and refining property of Al-Ti-C grain refinement alloy prepared by ultrasound coupling method were studied by analytical means such as SEM, and the reaction synthesis mechanism of Al-Ti-C grain refinement was discussed. Experimental results show that the Al-Ti-C alloy refiner using “thermite reduction method” under high-energy ultrasound was prepared experimentally. Its microstructure character is that master alloy has smaller size of TiC, its quantities are larger and are dispersed. Melt reaction is generally that the source of titanium releases Ti atoms under high temperature of ultrasonic. Ti atoms react with aluminum to generate TiAl3, and react with carbon to generate TiC.


2021 ◽  
Vol 99 (3) ◽  
pp. 49-56
Author(s):  
M. M. Voron ◽  
◽  
M. A. Fon Pruss ◽  

The work is devoted to the Al-10Mo electron-beam prepared master-alloy modifying phases dissolution and assimilation features determination. It is shown that the obtained master-alloy is characterized by uniform distribution and high dispersion of molybdenum aluminide particles. When studying the process of dissolving the master-alloy in pure aluminum, it was determined that the time of modification of the melt more than 20 minutes at a temperature of 740 ± 10 ° C leads to the most complete destruction of the original intermetallics Al22Mo5 and Al17Mo4 and the formation of smaller and evenly distributed particles Al5Mo and Al12Mo with dimensions about 2 μm. As the molybdenum content decreases, the dispersion of the modifying phases and the uniformity of their distribution increase. Increasing the temperature and exposure time do not improve the assimilation of the modifier. The Al-10Mo master-alloy, obtained in the conditions of electron-beam casting technology, has a number of characteristics that allow to consider it as more efficient and cost-effective, compared to known analogues. This is due to the much higher concentration of molybdenum in the modifier (10% wt.), as well as fine dispersion and uniform distribution of the modifying phases. The nonequilibrium composition of aluminides inherent in the ligatures obtained under these conditions contributes to their significant grinding and refining after addition into aluminum melts. The stoichiometry of the phases from Al22Mo5 and Al17Mo4 changes to Al12Mo, which serve as crystallization centers and have a size of about 1 μm, dissolves and changes. The example of industrial casting alloy AlSi9Cu3 shows complete and effective assimilation of the master-alloy in a short time of 5 minutes at a temperature of 740 ± 10 ° C. Such indicators are more economic, in comparison with standard industrial ones, for which both higher temperature of melt preparing ant longer lifetime in liquid state after modification are necessary. Keywords: master-alloys, Al-Mo, modifications, aluminum alloys, AlSi9Cu3, resource saving.


2016 ◽  
Vol 122 (12) ◽  
Author(s):  
Kun Xia Wei ◽  
Ping Liu ◽  
Wei Wei ◽  
Qing Bo Du ◽  
Igor V. Alexandrov ◽  
...  

2011 ◽  
Vol 306-307 ◽  
pp. 475-480
Author(s):  
Cong Juan Gao ◽  
Hai Min Ding ◽  
Xiang Fa Liu

Refining performance and mechanism of Al-5Ti-1B and Al-5Ti-0.4C master alloys at different temperature were investigated in this paper. The experimental results show that the refining effect of Al-5Ti-0.4C master alloy becomes worse as temperature increasing from 750°C to 1200°C, The refining effect of Al-5Ti-1B master alloy becomes worse as temperature increasing from 750°C to 1000°C. However, when the temperature is above 1000°C, the refining effect of Al-5Ti-1B master alloy recovers gradually as temperature increasing. TiB2 particles with TiAl3 layers are the heterogeneous nucleating cores of α-Al at low temperature. However, TiB2 particles are the heterogeneous nuclei of α-Al at high temperature.


Sign in / Sign up

Export Citation Format

Share Document