scholarly journals Effect of Deep Cryogenic Treatment on Wear and Galling Properties of High-Speed Steels

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7561
Author(s):  
Patricia Jovičević-Klug ◽  
Marko Sedlaček ◽  
Matic Jovičević-Klug ◽  
Bojan Podgornik

New approaches to improving wear resistance with an affordable and noncomplex technology, such as deep cryogenic treatment, (DCT0), are receiving attention. The aim of this study is to investigate the effect of DCT on the friction and wear performance of high-speed steels. AISI M2, AISI M3:2 and AISI M35 were heat-treated under different conditions, and then investigated under dry sliding conditions. Tribological testing involved different contact conditions, prevailing wear mechanisms and loading conditions. The DCT effect on sliding wear resistance depends on HSS steel grade, as well as contact conditions and wear mode, whereas it improves the dynamic impact of the wear and galling resistance.

2021 ◽  
Vol 1016 ◽  
pp. 1423-1429
Author(s):  
Kaweewat Worasaen ◽  
Andreas Stark ◽  
Karuna Tuchinda ◽  
Piyada Suwanpinij

A matrix type high speed steel YXR3 designed for a combination of wear resistance and toughness is investigated for its mechanical properties after hardening by deep cryogenic treatment follow by tempering. The deep cryogenic quenching carried out at -200 °C for 36 hours and the single step tempering results in an obvious improvement in wear resistance while balancing the toughness, comparing with the conventional quenching followed by a double tempering treatment. The quantitative image analysis reveals little difference in the MC carbide size distribution between tempering at different temperatures. The synchrotron high energy XRD confirms the MC type carbide with some evolution in its orientation together with tempered martensite approaching the BCC structure at higher temperatures. In contrary to the conventional quenching and tempering, the lowest tempering temperature at 200 °C yields a moderate drop in hardness with increase in surface toughness proportionally while exhibiting exceptional wear resistance. Such thermal cycle can be recommended for the industry both for the practicality and improved tool life.


Metals ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 808 ◽  
Author(s):  
Binzhou Li ◽  
Changsheng Li ◽  
Yu Wang ◽  
Xin Jin

This paper investigated the response of carburized 20CrNi2MoV steel to cryogenic treatment including microstructure and wear resistance. Two cryogenic treatment methods including cryogenic treatment at −80 °C (CT) and deep cryogenic treatment at −196 °C (DCT) as well as conventional heat treatment (CHT) were carried out after carburizing process. Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffractometry (XRD) were employed for microstructure characterization. The wear resistance was investigated by ball-on-disc sliding wear test on a multi-functional tribometer. The results show that the wear resistance of the experimental steel has been improved by 17% due to CT and by 25.5% due to DCT when compared to CHT. This significant improvement in wear resistance after cryogenic treatment is attributed to the microstructural changes including the finer martensitic structure, the reduction of retained austenite and the development of fine and more numerous carbides. Among these factors, the precipitation of fine carbides plays a more prominent role in enhancing wear resistance.


Author(s):  
Idayan A ◽  
C. Elanchezhian ◽  
B. Vijaya Ramnath ◽  
Palanikumar K

In this research work, two types of cryogenic treatment such as deep cryogenic treatment (-196oC) and shallow cryogenic treatment (-80oC) have been adopted for wear resistance to increase in AISI 440C bearing steel. This paper has been focused to increase Wear Resistance (WR) through deep micro structural analyses, and also attention has been made to correlate the microstructure with the wear character of Deep Cryogenic treated (DCT) specimens, Conventional Heat Treated (CHT) specimens and Shallow Cryogenic Treated (SCT) specimens. Micro structural examinations have been carried out in the specimens through Scanning Electron Microscopy (SEM), Energy Dispersive Analysis of X-ray (EDAX) and X-Ray Diffraction (XRD). Wear characteristics of AISI 440C bearing steel has been studied. The outcome of the research disclosed that the DCT specimens have higher wear resistance than SCT and CHT specimens. The effective wear mechanisms recognized were the constitution of white layers and delamination of white layers. The microstructures of the materials have been varied through heat treatment process. The modification of Secondary Carbides (SCs) precipitation characteristics and its reduction of retained austenite in the microstructure have been correlated with wear character and these are the liable mechanism to raise the wear resistance of bearing steels through DCT.


Vacuum ◽  
2006 ◽  
Vol 80 (6) ◽  
pp. 507-518 ◽  
Author(s):  
V. Leskovšek ◽  
M. Kalin ◽  
J. Vižintin

2015 ◽  
Vol 798 ◽  
pp. 395-401 ◽  
Author(s):  
S.A. Sonawane ◽  
V.K. Tripathi ◽  
S.D. Ambekar

The technique of cryogenic treatment of cutting tools is an inexpensive permanent treatment process that improves the physical and mechanical properties of materials such as metals, plastics and composites. It promotes the transformation of the retained austenite into martensite at cryogenic temperatures and also facilitates the formation of fine carbides in the martensite, thereby improving the wear resistance.This paper compares the wear behaviour of hardened and triple tempered AISI M2 high-speed steel and the same steel that was hardened and triple tempered in conjunction with a deep-cryogenic treatment at 88K for 16 and 24 hours. Test materials were subjected to wear tests on pin-on-disc machine in dry sliding condition. Equations are developed for predicting the wear resistance of M2 tool steel material. The hardness data wear loss and microstructure throw light on the improvement in wear resistance property of the M2 tool steel.It is demonstrated that the properties of the cryogenically treated samples are superior to those of conventionally treated. 24 hours cryogenically treated hardened and triple tempered M2 tool steel shows excellent wear resistance properties over 16 hours cryo-treated M2 and conventionally treated M2 tool steel material.


Author(s):  
B. Podgornik ◽  
V. Leskovsˇek ◽  
J. Vizˇintin

The aim of our work was to investigate the influence of deep-cryogenic treatment parameters (treatment time and temperature) and austenizing temperature on the tribological performance of powder-metallurgy (P/M) high-speed steel. Special emphasis was put on abrasive wear resistance and resistance to galling under dry sliding conditions. Abrasive wear resistance was tested under reciprocating sliding conditions using alumina ball, while galling resistance against austenitic stainless steel was determined in a load-scanning test rig. Tribological test were evaluated in terms of high-speed steel wear volume, coefficient of friction under reciprocating sliding, friction variation with load, and critical load for galling initiation and stainless steel transfer layer formation.


2019 ◽  
Vol 13 (3) ◽  
pp. 213-217
Author(s):  
Sanja Šolić ◽  
Zdravko Schauperl ◽  
Vlado Tropša

High speed steel (HSS) is a very important industrial tool material and has been constantly improved for different wear resistance applications and cutting tools, i.e. drills, milling cutters, hobs and for the cutting tools in which the economical cutting speed is too low for choosing the carbide tools. The properties of HSS depend significantly on the parameters of the conducted heat treatment. In this paper, the influence of deep cryogenic treatment in combination with nitriding of metallurgical powder metallurgy HSS on the wear resistance was measured. Additionally, the cutting performance in a single point cutting tool machinability test at the configuration of the dry low-speed turning of steel was investigated. The results showed that deep cryogenic treatment itself, and in combination with nitriding, resulted in the reduction of the wear rate. The results of the single point cutting tool machinability test showed that deep cryogenic treated and nitrided HSS inserts performed worse than the classically heat-treated inserts and deep cryogenic treated HSS inserts exhibited approximately the same flank wear as the nitrided ones.


Alloy Digest ◽  
1985 ◽  
Vol 34 (1) ◽  

Abstract TATMO-V is a high-speed tool steel with superior abrasion resistance because of its high contents of carbon and vanadium. It is an excellent choice for premium grade tools which require an outstanding balance of red hardness, edge toughness, and wear resistance. Increased tool life of Tatmo-V is noted in the machining of semi-hard, heat-treated steel pats (300-350 Brinell). This datasheet provides information on composition, physical properties, hardness, and elasticity as well as fracture toughness. It also includes information on forming, heat treating, and machining. Filing Code: TS-434. Producer or source: Latrobe Steel Company.


Sign in / Sign up

Export Citation Format

Share Document