scholarly journals Stability of the Fréchet Equation in Quasi-Banach Spaces

Mathematics ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 490
Author(s):  
Sang Og Kim

We investigate the Hyers–Ulam stability of the well-known Fréchet functional equation that comes from a characterization of inner product spaces. We also show its hyperstability on a restricted domain. We work in the framework of quasi-Banach spaces. In the proof, a fixed point theorem due to Dung and Hang, which is an extension of a fixed point theorem in Banach spaces, plays a main role.

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Anna Bahyrycz ◽  
Janusz Brzdęk ◽  
Magdalena Piszczek ◽  
Justyna Sikorska

We prove some stability and hyperstability results for the well-known Fréchet equation stemming from one of the characterizations of the inner product spaces. As the main tool, we use a fixed point theorem for the function spaces. We finish the paper with some new inequalities characterizing the inner product spaces.


Author(s):  
Renata Malejki

AbstractWe prove some stability and hyperstability results for a generalization of the well known Fréchet functional equation, stemming from one of the characterizations of the inner product spaces. As the main tool we use a fixed point theorem for some function spaces. We end the paper with some new inequalities characterizing the inner product spaces.


Filomat ◽  
2015 ◽  
Vol 29 (5) ◽  
pp. 1067-1080
Author(s):  
Zhihua Wang ◽  
Prasanna Sahoo

Using the fixed point method, we prove some results concerning the stability of the functional equation 2n?i=1 f(xi-1/2n 2n?j=1 xj)=2n?i=1 f (xi)-2nf(1/2n 2n?i=1 xi) where f is defined on a vector space and taking values in a fuzzy Banach space, which is said to be a functional equation related to a characterization of inner product spaces.


2010 ◽  
Vol 47 (4) ◽  
pp. 505-512
Author(s):  
Horst Martini ◽  
Senlin Wu

We give a geometric characterization of inner product spaces among all finite dimensional real Banach spaces via concurrent chords of their spheres. Namely, let x be an arbitrary interior point of a ball of a finite dimensional normed linear space X. If the locus of the midpoints of all chords of that ball passing through x is a homothetical copy of the unit sphere of X, then the space X is Euclidean. Two further characterizations of the Euclidean case are given by considering parallel chords of 2-sections through the midpoints of balls.


Author(s):  
Moosa Gabeleh ◽  
Mehdi Asadi ◽  
Pradip Ramesh Patle

We propose a new concept of condensing operators by using a notion of measure of non-compactness in the setting of Banach spaces and establish a new generalization of Darbo’s fixed point theorem. We also show the applicability of our results to integral equations. A concrete example will be presented to support the application part.


2018 ◽  
Vol 27 (1) ◽  
pp. 37-48
Author(s):  
ANDREI HORVAT-MARC ◽  
◽  
LASZLO BALOG ◽  

In this paper we present an extension of fixed point theorem for self mappings on metric spaces endowed with a graph and which satisfies a Bianchini contraction condition. We establish conditions which ensure the existence of fixed point for a non-self Bianchini contractions T : K ⊂ X → X that satisfy Rothe’s boundary condition T (∂K) ⊂ K.


2018 ◽  
Vol 7 (4.10) ◽  
pp. 694
Author(s):  
V. Usha ◽  
M. Mallika Arjunan

In this manuscript, we work to accomplish the Krasnoselskii's fixed point theorem to analyze the existence results for an impulsive neutral integro-differential equations  with infinite delay and non-instantaneous impulses in Banach spaces. By deploying the fixed point theorem with semigroup theory, we developed the coveted outcomes.   


Sign in / Sign up

Export Citation Format

Share Document