scholarly journals Dynamics of the Stochastic Belousov-Zhabotinskii Chemical Reaction Model

Mathematics ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 663
Author(s):  
Ying Yang ◽  
Daqing Jiang ◽  
Donal O’Regan ◽  
Ahmed Alsaedi

In this paper, we discuss the dynamic behavior of the stochastic Belousov-Zhabotinskii chemical reaction model. First, the existence and uniqueness of the stochastic model’s positive solution is proved. Then we show the stochastic Belousov-Zhabotinskii system has ergodicity and a stationary distribution. Finally, we present some simulations to illustrate our theoretical results. We note that the unique equilibrium of the original ordinary differential equation model is globally asymptotically stable under appropriate conditions of the parameter value f, while the stochastic model is ergodic regardless of the value of f.

Author(s):  
B. El Boukari ◽  
N. Yousfi

In this work we investigate a new mathematical model that describes the interactions betweenCD4+ T cells, human immunodeficiency virus (HIV), immune response and therapy with two drugs.Also an intracellular delay is incorporated into the model to express the lag between the time thevirus contacts a target cell and the time the cell becomes actively infected. The model dynamicsis completely defined by the basic reproduction number R0. If R0 ≤ 1 the disease-free equilibriumis globally asymptotically stable, and if R0 > 1, two endemic steady states exist, and their localstability depends on value of R0. We show that the intracellular delay affects on value of R0 becausea larger intracellular delay can reduce the value of R0 to below one. Finally, numerical simulationsare presented to illustrate our theoretical results.


Scientifica ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Baba Seidu

A deterministic ordinary differential equation model for SARS-CoV-2 is developed and analysed, taking into account the role of exposed, mildly symptomatic, and severely symptomatic persons in the spread of the disease. It is shown that in the absence of infective immigrants, the model has a locally asymptotically stable disease-free equilibrium whenever the basic reproduction number is below unity. In the absence of immigration of infective persons, the disease can be eradicated whenever ℛ 0 < 1 . Specifically, if the controls u i ,   i = 1,2,3,4 , are implemented to 100% efficiency, the disease dies away easily. It is shown that border closure (or at least screening) is indispensable in the fight against the spread of SARS-CoV-2. Simulation of optimal control of the model suggests that the most cost-effective strategy to combat SARS-CoV-2 is to reduce contact through use of nose masks and physical distancing.


2019 ◽  
Vol 4 (2) ◽  
pp. 349 ◽  
Author(s):  
Oluwatayo Michael Ogunmiloro ◽  
Fatima Ohunene Abedo ◽  
Hammed Kareem

In this article, a Susceptible – Vaccinated – Infected – Recovered (SVIR) model is formulated and analysed using comprehensive mathematical techniques. The vaccination class is primarily considered as means of controlling the disease spread. The basic reproduction number (Ro) of the model is obtained, where it was shown that if Ro<1, at the model equilibrium solutions when infection is present and absent, the infection- free equilibrium is both locally and globally asymptotically stable. Also, if Ro>1, the endemic equilibrium solution is locally asymptotically stable. Furthermore, the analytical solution of the model was carried out using the Differential Transform Method (DTM) and Runge - Kutta fourth-order method. Numerical simulations were carried out to validate the theoretical results. 


2017 ◽  
Vol 31 (3) ◽  
pp. 2274-2297 ◽  
Author(s):  
N. A. Slavinskaya ◽  
M. Abbasi ◽  
J. H. Starcke ◽  
R. Whitside ◽  
A. Mirzayeva ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Sibaliwe Maku Vyambwera ◽  
Peter Witbooi

We propose a stochastic compartmental model for the population dynamics of tuberculosis. The model is applicable to crowded environments such as for people in high density camps or in prisons. We start off with a known ordinary differential equation model, and we impose stochastic perturbation. We prove the existence and uniqueness of positive solutions of a stochastic model. We introduce an invariant generalizing the basic reproduction number and prove the stability of the disease-free equilibrium when it is below unity or slightly higher than unity and the perturbation is small. Our main theorem implies that the stochastic perturbation enhances stability of the disease-free equilibrium of the underlying deterministic model. Finally, we perform some simulations to illustrate the analytical findings and the utility of the model.


2021 ◽  
Vol 31 (03) ◽  
pp. 2150050
Author(s):  
Demou Luo ◽  
Qiru Wang

Of concern is the global dynamics of a two-species Holling-II amensalism system with nonlinear growth rate. The existence and stability of trivial equilibrium, semi-trivial equilibria, interior equilibria and infinite singularity are studied. Under different parameters, there exist two stable equilibria which means that this model is not always globally asymptotically stable. Together with the existence of all possible equilibria and their stability, saddle connection and close orbits, we derive some conditions for transcritical bifurcation and saddle-node bifurcation. Furthermore, the global dynamics of the model is performed. Next, we incorporate Allee effect on the first species and offer a new analysis of equilibria and bifurcation discussion of the model. Finally, several numerical examples are performed to verify our theoretical results.


Author(s):  
Jun Zhou ◽  
Junping Shi

In this paper, we revisit a reaction—diffusion autocatalytic chemical reaction model with decay. For higher-order reactions, we prove that the system possesses at least two positive steady-state solutions; hence, it has bistable dynamics similar to the system without decay. For the linear reaction, we determine the necessary and sufficient condition to ensure the existence of a solution. Moreover, in the one-dimensional case, we prove that the positive steady-state solution is unique. Our results demonstrate the drastic difference in dynamics caused by the order of chemical reactions.


Sign in / Sign up

Export Citation Format

Share Document