scholarly journals The Various Definitions of Multiple Differentiability of a Function f: ℝn→ ℝ

Mathematics ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 1946
Author(s):  
Alexander Kuleshov

Since the 17-th century the concepts of differentiability and multiple differentiability have become fundamental to mathematical analysis. By now we have the generally accepted definition of what a multiply differentiable function f:Rn→R is (in this paper we call it standard). This definition is sufficient to prove some of the key properties of a multiply differentiable function: the Generalized Young’s theorem (a theorem on the independence of partial derivatives of higher orders of the order of differentiation) and Taylor’s theorem with Peano remainder. Another definition of multiple differentiability, actually more general in the sense that it is suitable for the infinite-dimensional case, belongs to Fréchet. It turns out, that the standard definition and the Fréchet definition are equivalent for functions f:Rn→R. In this paper we introduce a definition (which we call weak) of multiple differentiability of a function f:Rn→R, which is not equivalent to the above-mentioned definitions and is in fact more general, but at the same time is sufficient enough to prove the Generalized Young’s and Taylor’s theorems.

Author(s):  
J-S Zhao ◽  
F Chu ◽  
Z-J Feng

The current paper proposes a unified analytical methodology to identify the principal screws of two- and three-screw systems. Based on the definition of the pitch of a screw, it first obtains an identical homogeneous quadric equation. According to functional analysis theory, it is known that the partial derivatives of an identical quadric equation with respect to its variables must be zero. Therefore, the paper deduces a set of linear homogeneous equations that are made up of the partial derivatives of the quadric equation. With the existing criteria of non-zero solutions for homogeneous linear algebra equations, it ultimately obtains the formulas of the principal pitches and the associated principal screws of the system. The most outstanding contribution of this methodology is that it proposes a unified analytical approach to identify the principal pitches and the principal coordinate systems of the second-order and the third-order screw systems. This should be a new contribution to the screw theory and will boost its applications to the kinematics analysis of robots and spatial mechanisms.


1985 ◽  
Vol 50 (4) ◽  
pp. 791-798 ◽  
Author(s):  
Vilém Kodýtek

The McMillan-Mayer (MM) free energy per unit volume of solution AMM, is employed as a generating function of the MM system of thermodynamic quantities for solutions in the state of osmotic equilibrium with pure solvent. This system can be defined by replacing the quantities G, T, P, and m in the definition of the Lewis-Randall (LR) system by AMM, T, P0, and c (P0 being the pure solvent pressure). Following this way the LR to MM conversion relations for the first derivatives of the free energy are obtained in a simple form. New relations are derived for its second derivatives.


2019 ◽  
Vol 51 (8) ◽  
pp. 1178-1191 ◽  
Author(s):  
SM Berman ◽  
RD Clear

Over the past decade, there has been a growing interest in lighting research on the effects of the recently discovered melanopsin receptor (also referred to as the intrinsically photosensitive retinal ganglion cell) and its impacts on health and vision. Presently, there is not a generally accepted metrology for dealing with the spectral response of the melanopsin receptor as applied to both lighting and vision research. A proposition to handle this issue from a vision science perspective has been presented in 2014 in the journal Trends in Neurosciences and from a more lighting perspective in 2017 in Lighting Research and Technology. These propositions are complex, and do not retain the CIE standard definition of a lumen. In this paper, we propose an approach based on effective watts and melanopic/photopic ratios that is both simpler and more closely aligned with CIE standard unit definitions. In addition, we include some practical examples of how such ratios are accessible now, and can be used for both lighting and vision research as well as applications.


1983 ◽  
Vol 105 (3) ◽  
pp. 200-202 ◽  
Author(s):  
D. M. Trujillo ◽  
H. R. Busby

A dynamic programming filter is derived to estimate the first and second derivatives of empirical data. A series of numerical experiments are conducted using a known differentiable function with various amounts of added random noise.


2009 ◽  
Vol 78 (3) ◽  
pp. 309-342 ◽  
Author(s):  
Patrik Johansson

AbstractUnder Chapter VII of the Charter of the United Nations, the Security Council has the unique authority to make decisions that are binding on member states. However, the lack of a standard definition of what makes a Security Council resolution "a Chapter VII resolution" has caused disagreement regarding the status of several resolutions. This is unfortunate as the international community should never have to doubt whether a Security Council resolution is in fact adopted under Chapter VII or not. It is also unnecessary. This article addresses this problem by proposing a definition of Chapter VII resolutions, based on two criteria referred to as "Article 39 determinations" and "Chapter VII decisions". On the basis of the proposed definition, the article describes and analyses a dramatic increase in the use of Chapter VII during the post-Cold War era. It concludes that as Chapter VII has come to constitute the majority of Security Council resolutions in recent years, the resort to Chapter VII no longer signifies exceptional determination and resolve, which it did during the Cold War; instead Chapter VII today implies business as usual. An appendix lists all Chapter VII resolutions from 1946–2008.


1949 ◽  
Vol 1 (1) ◽  
pp. 3-34
Author(s):  
Haydn Templeton

SummaryAileron reversal effects on swept-back wings in general and elevon reversal effects on tailless swept-back wings in particular are discussed on a non-mathematical basis, attention being confined to the orthodox flap type of control. The main purpose of the paper is to convey in the simplest terms possible a clear physical picture of the conditions producing loss of control power, emphasis being naturally laid upon the part played by structural wing distortion. Certain qualitative features relating to the two phenomena are also discussed. As a general introduction to the discussion on aileron reversal effects, the definition of “aileron power” in relation to the actual dynamic condition of rolling is described at some length. For elevon reversal effects on tailless aircraft the effect of wing flexibility on both “elevon power” and on trim in steady symmetric flight is considered. With the descriptive treatment adopted the analysis is of necessity broad and general but is designed to appeal to those not too familiar with the subject. The results of certain calculations on a hypothetical wing, which may be of interest, are included. A mathematical analysis for the quantitative estimation of both aileron and elevon reversal effects is given in the Appendix.


2021 ◽  
Vol 10 (08) ◽  
pp. 2714-2724
Author(s):  
兴祥 刘

Sign in / Sign up

Export Citation Format

Share Document