scholarly journals Algebraic Reflexivity of Non-Canonical Isometries on Lipschitz Spaces

Mathematics ◽  
2021 ◽  
Vol 9 (14) ◽  
pp. 1635
Author(s):  
Antonio Jiménez-Vargas ◽  
María Isabel Ramírez

Let Lip([0,1]) be the Banach space of all Lipschitz complex-valued functions f on [0,1], equipped with one of the norms: fσ=|f(0)|+f′L∞ or fm=max|f(0)|,f′L∞, where ·L∞ denotes the essential supremum norm. It is known that the surjective linear isometries of such spaces are integral operators, rather than the more familiar weighted composition operators. In this paper, we describe the topological reflexive closure of the isometry group of Lip([0,1]). Namely, we prove that every approximate local isometry of Lip([0,1]) can be represented as a sum of an elementary weighted composition operator and an integral operator. This description allows us to establish the algebraic reflexivity of the sets of surjective linear isometries, isometric reflections, and generalized bi-circular projections of Lip([0,1]). Additionally, some complete characterizations of such reflections and projections are stated.

1985 ◽  
Vol 31 (1) ◽  
pp. 117-126 ◽  
Author(s):  
R.K. Singh ◽  
R. David Chandra Kumar

Let X be a non-empty set and let H(X) denote a Hibert space of complex-valued functions on X. Let T be a mapping from X to X and θ a mapping from X to C such that for all f in H(X), f ° T is in H(x) and the mappings CT taking f to f ° T and M taking f to θ.f are bounded linear operators on H(X). Then the operator CTMθ is called a weighted composition operator on H(X). This note is a report on the characterization of weighted composition operators on functional Hilbert spaces and the computation of the adjoint of such operators on L2 of an atomic measure space. Also the Fredholm criteria are discussed for such classes of operators.


2008 ◽  
Vol 2008 ◽  
pp. 1-12 ◽  
Author(s):  
Sei-Ichiro Ueki ◽  
Luo Luo

We estimate the essential norm of a compact weighted composition operator acting between different Hardy spaces of the unit ball in . Also we will discuss a compact multiplication operator between Hardy spaces.


2012 ◽  
Vol 2012 ◽  
pp. 1-20 ◽  
Author(s):  
Flavia Colonna ◽  
Songxiao Li

The logarithmic Bloch spaceBlog⁡is the Banach space of analytic functions on the open unit disk&#x1D53B;whose elementsfsatisfy the condition∥f∥=sup⁡z∈&#x1D53B;(1-|z|2)log⁡  (2/(1-|z|2))|f'(z)|<∞. In this work we characterize the bounded and the compact weighted composition operators from the Hardy spaceHp(with1≤p≤∞) into the logarithmic Bloch space. We also provide boundedness and compactness criteria for the weighted composition operator mappingHpinto the little logarithmic Bloch space defined as the subspace ofBlog⁡consisting of the functionsfsuch thatlim⁡|z|→1(1-|z|2)log⁡  (2/(1-|z|2))|f'(z)|=0.


2021 ◽  
Vol 29 (2) ◽  
pp. 243-250
Author(s):  
HAMID VAEZI ◽  
MOHAMAD NAGHLISAR

In this paper we consider the weighted composition operator uC_{\varphi} from Bloch-type space B^{\alpha} into Bers-type space H_{\beta}^{\infty}, in three cases, \alpha>1, \alpha=1 and \alpha<1. We give the necessary and sufficient conditions for boundedness and compactness of the above operator.


Author(s):  
Werkaferahu Seyoum ◽  
Tesfa Mengestie

AbstractFor holomorphic pairs of symbols $$(u, \psi )$$ ( u , ψ ) , we study various structures of the weighted composition operator $$ W_{(u,\psi )} f= u \cdot f(\psi )$$ W ( u , ψ ) f = u · f ( ψ ) defined on the Fock spaces $$\mathcal {F}_p$$ F p . We have identified operators $$W_{(u,\psi )}$$ W ( u , ψ ) that have power-bounded and uniformly mean ergodic properties on the spaces. These properties are described in terms of easy to apply conditions relying on the values |u(0)| and $$|u(\frac{b}{1-a})|$$ | u ( b 1 - a ) | , where a and b are coefficients from linear expansion of the symbol $$\psi $$ ψ . The spectrum of the operators is also determined and applied further to prove results about uniform mean ergodicity.


2016 ◽  
Vol 27 (02) ◽  
pp. 1650017 ◽  
Author(s):  
Maofa Wang ◽  
Xingxing Yao

In this paper, we investigate analytic symbols [Formula: see text] and [Formula: see text] when the weighted composition operator [Formula: see text] is complex symmetric on general function space [Formula: see text]. As applications, we characterize completely the compactness, normality and isometry of complex symmetric weighted composition operators. Especially, we show that the equivalence of compactness and Hilbert–Schmidtness, and the existence of non-normal complex symmetric operators for such operators, which answers one open problem raised by Noor in [On an example of a complex symmetric composition operators on [Formula: see text], J. Funct. Anal. 269 (2015) 1899–1901] for higher dimensional case.


Author(s):  
Tesfa Mengestie ◽  
Werkaferahu Seyoum

AbstractFor pairs of holomorphic maps $$(u,\psi )$$ ( u , ψ ) on the complex plane, we study some dynamical properties of the weighted composition operator $$W_{(u,\psi )}$$ W ( u , ψ ) on the Fock spaces. We prove that no weighted composition operator on the Fock spaces is supercyclic. Conditions under which the operators satisfy the Ritt’s resolvent growth condition are also identified. In particular, we show that a non-trivial composition operator on the Fock spaces satisfies such a growth condition if and only if it is compact.


2008 ◽  
Vol 19 (08) ◽  
pp. 899-926 ◽  
Author(s):  
ZE-HUA ZHOU ◽  
REN-YU CHEN

Let ϕ(z) = (ϕ1(z),…,ϕn(z)) be a holomorphic self-map of B and ψ(z) a holomorphic function on B, where B is the unit ball of ℂn. Let 0 < p, s < +∞, -n - 1 < q < +∞, q+s > -1 and α ≥ 0, this paper characterizes boundedness and compactness of weighted composition operator Wψ,ϕ induced by ϕ and ψ between the space F(p, q, s) and α-Bloch space [Formula: see text].


2009 ◽  
Vol 2009 ◽  
pp. 1-13 ◽  
Author(s):  
M. Haji Shaabani ◽  
B. Khani Robati

We obtain a representation for the norm of certain compact weighted composition operator on the Hardy space , whenever and . We also estimate the norm and essential norm of a class of noncompact weighted composition operators under certain conditions on and . Moreover, we characterize the norm and essential norm of such operators in a special case.


2008 ◽  
Vol 2008 ◽  
pp. 1-11 ◽  
Author(s):  
Stevo Stević

This paper finds some lower and upper bounds for the essential norm of the weighted composition operator fromα-Bloch spaces to the weighted-type spaceHμ∞on the unit ball for the caseα≥1.


Sign in / Sign up

Export Citation Format

Share Document