scholarly journals Product Type Operators Involving Radial Derivative Operator Acting between Some Analytic Function Spaces

Mathematics ◽  
2021 ◽  
Vol 9 (19) ◽  
pp. 2447
Author(s):  
Manisha Devi ◽  
Kuldip Raj ◽  
Mohammad Mursaleen

Let N denote the set of all positive integers and N0=N∪{0}. For m∈N, let Bm={z∈Cm:|z|<1} be the open unit ball in the m−dimensional Euclidean space Cm. Let H(Bm) be the space of all analytic functions on Bm. For an analytic self map ξ=(ξ1,ξ2,…,ξm) on Bm and ϕ1,ϕ2,ϕ3∈H(Bm), we have a product type operator Tϕ1,ϕ2,ϕ3,ξ which is basically a combination of three other operators namely composition operator Cξ, multiplication operator Mϕ and radial derivative operator R. We study the boundedness and compactness of this operator mapping from weighted Bergman–Orlicz space AσΨ into weighted type spaces Hω∞ and Hω,0∞.

2010 ◽  
Vol 2010 ◽  
pp. 1-14 ◽  
Author(s):  
Stevo Stević ◽  
Sei-Ichiro Ueki

Let&#x1D539;denote the open unit ball ofℂn. For a holomorphic self-mapφof&#x1D539;and a holomorphic functiongin&#x1D539;withg(0)=0, we define the following integral-type operator:Iφgf(z)=∫01ℜf(φ(tz))g(tz)(dt/t),z∈&#x1D539;. Hereℜfdenotes the radial derivative of a holomorphic functionfin&#x1D539;. We study the boundedness and compactness of the operator between Bloch-type spacesℬωandℬμ, whereωis a normal weight function andμis a weight function. Also we consider the operator between the little Bloch-type spacesℬω,0andℬμ,0.


1980 ◽  
Vol 21 (2) ◽  
pp. 199-204 ◽  
Author(s):  
Earl Berkson ◽  
Horacio Porta

Let C be the complex plane, and U the disc |Z| < 1 in C. Cn denotes complex n-dimensional Euclidean space, <, > the inner product, and | · | the Euclidean norm in Cn;. Bn will be the open unit ball {z ∈ Cn:|z| < 1}, and Un will be the unit polydisc in Cn. For l ≤ p < ∞, p ≠ 2, Gp(Bn) (resp., Gp(Un)) will denote the group of all isometries of Hp(Bn) (resp., Hp(Un)) onto itself, where Hp(Bn) and HP(Un) are the usual Hardy spaces.


1980 ◽  
Vol 21 (1) ◽  
pp. 199-204
Author(s):  
Earl Berkson ◽  
Horacio Porta

Let C be the complex plane, and U the disc |z| < 1 in C. Cn denotes complex n-dimensional Euclidean space, <, > the inner product, and | · | the Euclidean norm in Cn. Bn will be the open unit ball {z ∈ Cn: |z| < 1}, and Un will be the unit polydisc in Cn. For 1 ≤p<∞, p≠2, Gp(Bn) (resp., Gp (Un)) will denote the group of all isometries of Hp (Bn) (resp., Hp (Un)) onto itself, where Hp (Bn) and Hp (Un) are the usual Hardy spaces.


Author(s):  
Josip Globevnik
Keyword(s):  

It is shown that if V is a closed submanifold of the open unit ball of ℂ2 biholomorphically equivalent to a disc, then the area of V ∩ r can grow arbitrarily rapidly as r ↗ 1. It is also shown that if V is a closed submanifold of ℂ2 biholomorphically equivalent to a disc, then the area of V ∩ r can grow arbitrarily rapidly as r ↗ ∞.


1990 ◽  
Vol 33 (2) ◽  
pp. 169-180 ◽  
Author(s):  
Juan A. Gatica ◽  
Gaston E. Hernandez ◽  
P. Waltman

The boundary value problemis studied with a view to obtaining the existence of positive solutions in C1([0, 1])∩C2((0, 1)). The function f is assumed to be singular in the second variable, with the singularity modeled after the special case f(x, y) = a(x)y−p, p>0.This boundary value problem arises in the search of positive radially symmetric solutions towhere Ω is the open unit ball in ℝN, centered at the origin, Γ is its boundary and |x| is the Euclidean norm of x.


1999 ◽  
Vol 42 (1) ◽  
pp. 97-103 ◽  
Author(s):  
E. G. Kwon

AbstractLet B = Bn be the open unit ball of Cn with volume measure v, U = B1 and B be the Bloch space on , 1 ≤ α < 1, is defined as the set of holomorphic f : B → C for whichif 0 < α < 1 and , the Hardy space. Our objective of this note is to characterize, in terms of the Bergman distance, those holomorphic f : B → U for which the composition operator defined by , is bounded. Our result has a corollary that characterize the set of analytic functions of bounded mean oscillation with respect to the Bergman metric.


2012 ◽  
Vol 2012 ◽  
pp. 1-21 ◽  
Author(s):  
Yongmin Liu ◽  
Yanyan Yu

LetH(&#x1D53B;)be the space of analytic functions on&#x1D53B;andu∈H(&#x1D53B;). The boundedness and compactness of the multiplication operatorMufromF(p,q,s),(or  F0(p,q,s))spaces tonth weighted-type spaces on the unit disk are investigated in this paper.


1995 ◽  
Vol 47 (4) ◽  
pp. 673-683 ◽  
Author(s):  
R. M. Aron ◽  
B. J. Cole ◽  
T. W. Gamelin

AbstractLet 𝒳 be a complex Banach space, with open unit ball B. We consider the algebra of analytic functions on B that are weakly continuous and that are uniformly continuous with respect to the norm. We show these are precisely the analytic functions on B that extend to be weak-star continuous on the closed unit ball of 𝒳**. If 𝒳* has the approximation property, then any such function is approximable uniformly on B by finite polynomials in elements of 𝒳*. On the other hand, there exist Banach spaces for which these finite-type polynomials fail to approximate. We consider also the approximation of entire functions by finite-type polynomials. Assuming 𝒳* has the approximation property, we show that entire functions are approximable uniformly on bounded sets if and only if the spectrum of the algebra of entire functions coincides (as a point set) with 𝒳**.


Sign in / Sign up

Export Citation Format

Share Document