scholarly journals Weighted Second-Order Differential Inequality on Set of Compactly Supported Functions and Its Applications

Mathematics ◽  
2021 ◽  
Vol 9 (21) ◽  
pp. 2830
Author(s):  
Aigerim Kalybay ◽  
Ryskul Oinarov ◽  
Yaudat Sultanaev

In the paper, we establish the oscillatory and spectral properties of a class of fourth-order differential operators in dependence on integral behavior of its coefficients at zero and infinity. In order to obtain these results, we investigate a certain weighted second-order differential inequality of independent interest.

Author(s):  
K. J. Brown ◽  
I. M. Michael

SynopsisIn a recent paper, Jyoti Chaudhuri and W. N. Everitt linked the spectral properties of certain second order ordinary differential operators with the analytic properties of the solutions of the corresponding differential equations. This paper considers similar properties of the spectrum of the corresponding partial differential operators.


Author(s):  
W. N. Everitt

SynopsisThis paper considers an extension of the following inequality given in the book Inequalities by Hardy, Littlewood and Polya; let f be real-valued, twice differentiable on [0, ∞) and such that f and f are both in the space fn, ∞), then f′ is in L,2(0, ∞) andThe extension consists in replacing f′ by M[f] wherechoosing f so that f and M[f] are in L2(0, ∞) and then seeking to determine if there is an inequality of the formwhere K is a positive number independent of f.The analysis involves a fourth-order differential equation and the second-order equation associated with M.A number of examples are discussed to illustrate the theorems obtained and to show that the extended inequality (*) may or may not hold.


Author(s):  
Anna Kh. Balci ◽  
Andrea Cianchi ◽  
Lars Diening ◽  
Vladimir Maz’ya

AbstractA sharp pointwise differential inequality for vectorial second-order partial differential operators, with Uhlenbeck structure, is offered. As a consequence, optimal second-order regularity properties of solutions to nonlinear elliptic systems in domains in $${\mathbb R^n}$$ R n are derived. Both local and global estimates are established. Minimal assumptions on the boundary of the domain are required for the latter. In the special case of the p-Laplace system, our conclusions broaden the range of the admissible values of the exponent p previously known.


Author(s):  
Jyoti Chaudhuri ◽  
W. N. Everitt

SynopsisThis paper considers properties of the spectrum of differential operators derived from differential expressions of the second order. The object is to link the spectral properties of these differential operators with the analytic, function-theoretic properties of the solutions of the differential equation. This provides an alternative approach to the spectral theory of these differential operators but one which is consistent with the standard definitions used in Hilbert space theory. In this way the approach may be of interest to applied mathematicians and theoretical physicists.


1997 ◽  
Vol 122 (2) ◽  
pp. 153-168
Author(s):  
Ondřej Došlý ◽  
Roman Hilscher

Sign in / Sign up

Export Citation Format

Share Document