Simple Algebraic Expressions for the Prediction and Control of High-Temperature Annealed Structures by Linear Perturbation Analysis
The prediction and control of the transformation of void structures with high-temperature processing is a critical area in many engineering applications. In this work, focused on the void shape evolution of silicon, a novel algebraic model for the calculation of final equilibrium structures from initial void cylindrical trenches, driven by surface diffusion, is introduced. This algebraic model provides a simple and fast way to calculate expressions to predict the final geometrical characteristics, based on linear perturbation analysis. The obtained results are similar to most compared literature data, especially, to those in which a final transformation is reached. Additionally, the model can be applied in any materials affected by the surface diffusion. With such a model, the calculation of void structure design points is greatly simplified not only in the semiconductors field but in other engineering fields where surface diffusion phenomenon is studied.