scholarly journals Removal of Ibuprofen at Low Concentration Using a Newly Formulated Emulsion Liquid Membrane

Membranes ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 740
Author(s):  
Abdul Latif Ahmad ◽  
Mohd Hazarel Zairy Mohd Harun ◽  
Mohd Khairul Akmal Jasni ◽  
Nur Dina Zaulkiflee

Ibuprofen (IBP) is a pharmaceutical product that is widely prescribed as an over-the-counter painkiller. It has been classified as a contaminant of emerging concern (CEC) that has received global attention in the search for a better wastewater separation technology. The emulsion liquid membrane (ELM) is one of the potential solutions for IBP removal from wastewater owing to its advantages, such as the ability to remove a highly soluble solute, energy efficient and tuneable formulation. To develop this ELM, a series of parameters such as stirring speed, emulsification time, organic to internal phase volume ratio (O/I), internal phase concentration, carrier concentration and surfactant concentration were studied. The extraction was carried out for 15 min stirring time and the concentration of IBP in the feed phase was determined using a UV-Vis spectrophotometer. The optimum formulation for the ELM was found at 300 rpm stirring speed, 20 min emulsification time, 3:1 of O/I, 0.1 M ammonia, NH3 (stripping agent), 6 wt% trioctylamine, TOA (carrier) and 2 wt% sorbitan monooleate, Span 80 (non-ionic surfactant). IBP removal of 89% was achieved at the optimum parameters of ELM. The current research demonstrated that a newly formulated ELM has great potential in removing a low concentration IBP from wastewater.

2017 ◽  
Vol 7 (5) ◽  
pp. 2068-2072 ◽  
Author(s):  
E. Fouad ◽  
F. Ahmad ◽  
K. Abdelrahman

This study focuses on evaluating the process parameters and their effects on extraction of lead as well as emulsion breaking. The Signal / Noise ratios have been used to study the performance characteristics. Six parameters affecting extraction by emulsion liquid membrane, namely, TOPO, Span80, and internal phase concentration, feed/emulsion ratio, agitation time and feed pH have been optimized with considerations to lead extraction and emulsion breaking. The standardized effects of the independent variables and their interactions were tested by the analysis of variance (ANOVA) with 95% confidence limits (α= 0.05) and Pareto chart. The use of the optimal values of these parameters has been proved useful in maximizing the extraction efficiency and minimizing the emulsion breakage. TOPO concentration of 0.1498 M, Span 80 concentration of 3.007 v%, Internal phase concentration of 0.183 M, Feed/emulsion volume ratio of 1.407, agitation time of 30 minutes, and feed pH of 5 are determined as the optimum parameters.


2014 ◽  
Vol 67 (2) ◽  
Author(s):  
Norasikin Othman ◽  
Ooi Zing-Yi ◽  
Norlisa Harruddin ◽  
Raja Norimie ◽  
Norela Jusoh ◽  
...  

Nowadays, water pollution has become major issue especially dye contaminated wastewaters from the textile industry. Dye causes serious environmental pollution and health problems. The removal of color from dye-contaminated wastewaters in the related industries becomes a major concern all over the world. In this research, several parameters of dye extraction and recovery in the continuous emulsion liquid membrane (ELM) process were investigated. This process consisted of three phases which are external (feed) phase, membrane phase and internal phase. The membrane phase was prepared by dissolving extractant bis(2-ethylhexyl)phosphoric acid (D2EHPA) and hydrophobic surfactant sorbitan monooleate (Span 80) in kerosene as diluents. The internal phase consisted of an aqueous solution of sulfuric acid (H2SO4). The important parameters governing the extraction process of dye such as stirring speed, initial dye concentration, Span 80 concentration and treat ratio (volume ratio of emulsion to external phase) were studied. The results showed that the optimum condition for 25ppm initial concentration of dye extraction are 250 rpm stirring speed, 5% (w/v) Span 80 and treat ratio 1:5. At this condition, the percentage of dye extraction, stripping and recovery were 98%, 82% and 81% respectively. Hence, continuous ELM technique is proven to be a very promising technique in industrial wastewater treatment and recovery of dye.


2011 ◽  
Vol 356-360 ◽  
pp. 1962-1966
Author(s):  
Chun Shan Zhu ◽  
Li Qiu ◽  
Jia Song ◽  
Yan Li Yuan

The micro-emulsion liquid membrane (MELM) was prepared for the extraction of hexavalent chromium (Cr (Ⅵ)) from wastewater. The membrane phase consists of kerosene as a membrane solvent, tributyl phosphate (TBP) as a mobile carrier, and sorbitan monooleate(Span80) as a surfactant. A NaOH solution is the internal aqueous phase. The effects of different conditions on the extractive of Cr (Ⅵ) were discussed. The results showed that the removal rate of Cr (Ⅵ) could reach 99.78% when the NaOH concentration was of 0.1mol•L-1in internal phase, the pH values 1.0-1.75 in external phase, Rew of 1:3 and Roi of 2:1, stirring time of 12min and stirring rate of 320r•min-1, 10% of carrier and 15%-17% of surfactant.


2018 ◽  
Vol 80 (3) ◽  
Author(s):  
Adhi Kusumastuti ◽  
A. L. Ahmad ◽  
Rodia Syamwil ◽  
Samsudin Anis

Although textile dyes is basically available in very low concentration (10-200 ppm); it should be removed due to the toxicity to human body and environment. Among the existing methods, emulsion liquid membrane (ELM) is a promising method by providing high interfacial area and the ability to remove a very low concentration of the solute. The optimal emulsions were produced using commercially supplied homogeniser. Initially, methylene blue in simulated wastewater was extracted using a Taylor-Couette column. Methylene blue concentration was determined using spectrophotometer. Complete extraction was performed in the designed column. The research obtained optimal extraction efficiency of about 99% at external phase pH of 10, carrier concentration of 9 wt. %, HCl concentration of 0.5 M, initial feed concentration of 20 ppm, volume ratio of emulsion to feed phase of 1:5, extraction time of 5 min, and extraction speed of 600 rpm. 


2015 ◽  
Vol 75 (1) ◽  
Author(s):  
A. L. Ahmad ◽  
M. M. H. Shah Buddin ◽  
B. S. Ooi ◽  
Adhi Kusumastuti

The aim of this research is to quantify the occurrence of membrane breakage in vegetable oil based Emulsion Liquid Membrane (ELM). Basically, ELM consists of three main phases; internal, external and membrane. In this work, the membrane phase was prepared by dissolving Span 80 as surfactant and Aliquat 336 as carrier in commercial grade corn oil. As a way to promote sustainable development, vegetable oil which is environmentally benign diluent was incorporated in the formulation of ELM. The influence of several important parameters towards membrane breakage were studied. They are carrier and surfactant concentration, W/O volume ratio, emulsification time, internal phase concentration as well as stirring speed. Based on the data obtained, emulsion prepared using 4 wt% Aliquat 336 and 3 wt% Span 80 resulted in the most stable emulsion with only 0.05% membrane breakage. The emulsion was produced using W/O volume ratio of 1/3 and it was homogenized with the assistance of ultrasound for 15 min. Moreover, emulsion produced able to provide a fair balance between emulsion stability and Cd(II) permeability as it able to remove 98.20% Cd(II) ions from the external phase. 


2018 ◽  
Vol 34 (6) ◽  
pp. 2747-2754 ◽  
Author(s):  
Masoud Nasiri Zarandi ◽  
Amirhossein Soltani

The purpose of this study was to investigate the extraction of lead by emulsion liquid membrane as an effective alternative to conventional lead extraction methods. The emulsion included D-2-ethylhexyl phosphoric acid (D2EHPA) as a carrier, paraffin and kerosene composition as an organic solvent, Span 80 as an emulsifier and sulfuric acid as an internal stripping phase. In this project, 7 effective factors in extraction of lead were chosen by emulsion liquid membrane, which included concentration of sulfuric acid in the internal phase, volume ratio of the emulsion to external phase (Rew), the ratio of organic phase to internal phase (Roi), initial pH of external phase, contact time of the emulsion and external phase, carrier concentration and concentration of surfactant in the membrane phase. After the initial experiments to make a stable emulsion, membrane phase mix (70% paraffin and 30% kerosene), homogenizer speed (12000 rpm) and mixer speed (309 rpm) were selected. The final experiments were designed by Taguchi statistical method. Optimization was done according to higher extraction rate and the effect of each of these factors and their optimal values as well as optimal conditions were determined. By verification test, it was shown that more than 92% of lead can be extracted from a solution with a concentration of 2000 ppm.


2013 ◽  
Vol 65 (4) ◽  
Author(s):  
Raja Norimie Raja Sulaiman ◽  
Norasikin Othman ◽  
Nor Aishah Saidina Amin

The increasing numbers of product containing nanosilver have raised a great concern about their possible impact in the environment especially in the ionic form which leads to the toxicity problem when the association occurs with the organism cells. Therefore, the main focus of this study was to investigate several parameters influencing the recovery of ionized nanosilver from wash water using emulsion liquid membrane (ELM) process. This process involves three phases dispersion system including external, membrane and internal phase. The membrane phase was prepared by dissolving bis [2, 4, 4-trimethylpentyl] monothiophosphinic acid (Cyanex 302) as a carrier and Sorbitan Monooleate (Span 80) as a surfactant in kerosene as a diluent. Thiourea in Sulfuric acid (H2SO4) was used as a stripping agent in the internal phase. The important parameters such as extraction time, carrier and stripping agent concentrations were investigated. All experiments were conducted in batch system. The concentration of the ionized nanosilver was measured using Atomic Absorption Spectrometry (AAS). The result demonstrated that almost 100% of silver ion was extracted with 91% have been recovered within 5 minute of extraction time using 0.005 M Cyanex 302 and 1.0 M Thiourea in 1.5 M H2SO4. Hence, ELM was proven to be a very promising technique for the simultaneous extraction and recovery of ionized nanosilver from wash water.


2011 ◽  
Vol 356-360 ◽  
pp. 1675-1678 ◽  
Author(s):  
Wei Peng ◽  
Chun Jian Xu

Removal of phenol from aqueous solution by a new emulsion liquid membrane (ELM) system and its heat-induced demulsification have been investigated. The ELM consists of commercial kerosene as organic solvent, OP-4 as surfactant agent, hydrochloric acid as the stripping phase. Effect of different operating parameters such as internal phase concentration, surfactant concentration, stirring speed, PH value in external phase, volume ratio of membrane phase to internal phase and volume ratio of membrane phase to external phase were investigated for the removal of phenol from aqueous solution. At the optimum condition about 95.7% phenol is removed in less than 20min of contact time. The demulsification efficiency was investigated under different temperature and time and proved to be high at 80°C.


2017 ◽  
Vol 3 (1) ◽  
pp. 1 ◽  
Author(s):  
Elsayed Ali Fouad

Abstract--The main objectives of this research were focused on extracting nickel ions from waste water using emulsion liquid membrane as well as determining the optimal conditions for the extraction process. Taguchi experimental design method was applied to determine the optimum extraction conditions. The controllable factors of the emulsion liquid membrane process were carrier; surfactant; and internal phase concentration, treating ratio, stirring time, and feed phase acidity were optimized. The contribution of each controllable factor was also explored. The results indicated the greatest effect of the carrier concentration in comparison to other parameters. The five other parameters slightly affected the extraction percentage of nickel. The optimum conditions for the extraction was found to be carrier concentration (M) of 0.25, surfactant concentration (v %) of 10, internal phase concentration (M) of 0.1, external / emulsion ratio (v/v) of 5, stirring time (min.) of 1, and feed phase pH of 0.5.


2019 ◽  
Author(s):  
Adhi Kusumastuti ◽  
Widi Astuti ◽  
Nur Qudus

High demand on batik fabric significantly increased wastewater volume from batik home industries. Copper, being used as mordanting agent, available in the highest concentration in industrial textile wastewater. Emulsion liquid membrane (ELM) is promising selective method to recover solute. Taylor-Couette column (TCC) was proposedtoextractcopperinsteadofusingconventionalreactorthatdisturbsemulsion stability. Experiment was done by varying volume ratio of emulsion to feed phase, carrier and internal phase concentration. Extraction efficiency of>98% was obtained at volume ratio of emulsion to feed phase of 1:5, carrier concentration of 4 wt. %, and internal phase concentration of 0.1 M, respectively


Sign in / Sign up

Export Citation Format

Share Document