scholarly journals Laser Polishing of Ti6Al4V Fabricated by Selective Laser Melting

Metals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 191 ◽  
Author(s):  
Chunyong Liang ◽  
Yazhou Hu ◽  
Ning Liu ◽  
Xianrui Zou ◽  
Hongshui Wang ◽  
...  

Selective laser melting (SLM) is emerging as a promising 3D printing method for orthopedic and dental applications. However, SLM-based Ti6Al4V components frequently exhibit high roughness values and partial surface defects. Laser polishing (LP) is a newly developed technology to improve the surface quality of metals. In this research, LP is applied to improve the surface finish of components. The results show that the laser beam can neatly ablate the aggregates of metallic globules and repair cracks and pores on the surface, resulting in a smooth surface with nanocomposites. Overall, the results indicate that using LP optimizes surface morphology to favor fatigue behavior and osteoblastic differentiation. These findings provide foundational data to improve the surface roughness of a laser-polished implant and pave the way for optimized mechanical behavior and biocompatibility via the laser process.

Author(s):  
Sagar Sarkar ◽  
Ankit Porwal ◽  
Nuthalapati Yaswanth ◽  
Ashish Kumar Nath

Selective Laser Melting process enables production of geometrically complex parts directly from CAD model by melting metal powders layer by layer. For successful building of parts, some auxiliary structures namely support structures are also built to ensure proper heat conduction from actual parts to be built to the base plate. Support structures are needed if there are overhang surfaces in the design of the part. If the design of the part is very complex and features many overhang surfaces, then too many supports get generated. After building the part, these support structures need to be removed properly to get desired geometrical features and it may deteriorate the surface quality from where supports are removed. Sometimes removal of support structures becomes very difficult specially for parts having internal features. In this study, first effect of inclined angle, aspect ratio and different scanning strategies on the quality of overhang surfaces produced without any support structure under constant laser power and scan speed has been investigated. Scanning Electron Microscopy (SEM) images of overhang surfaces have been analyzed to investigate the presence of warping and uneven fused edges if any. It was found that with increase in inclined angles and aspect ratio, warping and presence of uneven fused edges increases. Rotational scanning strategy found to be better than linear alternate scanning strategy for reduced uneven fused edges formation and warping. Results show an overhang without any support structure can be built successfully with a single laser process parameters upto 25.343 degree which is less than theoretical critical angle of 26.565 degree. Further, it has been shown, using a novel strategy of building overhang with multiple laser process parameters, it is possible to build overhang even upto 24.132 degree.


2020 ◽  
Vol 10 (3) ◽  
pp. 760
Author(s):  
Dongqi Zhang ◽  
Jie Yu ◽  
Hui Li ◽  
Xin Zhou ◽  
Changhui Song ◽  
...  

Selective laser melting (SLM) is a layer by layer process of melting and solidifying of metal powders. The surface quality of the previous layer directly affects the uniformity of the next layer. If the surface roughness value of the previous layer is large, there is the possibility of not being able to complete the layering process such that the entire process has to be abandoned. At least, it may result in long term durability problem and the inhomogeneity, may even make the processed structure not be able to be predicted. In the present study, the ability of a fiber laser to in-situ polish the rough surfaces of four typical additive-manufactured alloys, namely, Ti6Al4V, AlSi10Mg, 316L and IN718 was demonstrated. The results revealed that the surface roughness of the as-received alloys could be reduced to about 3 μm through the application of the laser-polishing process, and the initial surfaces had roughness values of 8.80–16.64 μm. Meanwhile, for a given energy density, a higher laser power produced a laser-polishing effect that was often more obvious, with the surface roughness decreasing with an increase in the laser power. Further, the polishing strategy will be optimized by simulation in our following study.


2019 ◽  
Vol 795 ◽  
pp. 208-214 ◽  
Author(s):  
Rui Da Xu ◽  
Hui Chen Yu

Addictive manufacturing (AM) allows for the layer-by-layer fabrication of components via sequential material deposition and it is of immediate interest in many applications, in particularly aviation field. This work is tackling the issue that the influence of the inner-defects and building orientations on the fatigue behavior of Ti-6Al-4V Alloys produced by Selective Laser Melting (SLM). Specimens were built in two orientations (horizontal and vertical to the substrate) in order to evaluate the impact of the induced anisotropy of fatigue properties. A series of fatigue tests at five stress ratios ranged from-1 to 0.8 are conducted at 400°C. Scanning Electron Microscopy (SEM) is used to examine the fracture surfaces of fatigue specimens to qualify the failure mechanism and crack initiation sites, which are most likely attached to the surface defects. The fracture surface analysis of HCF specimen tested at two temperatures reveals that near 85% of the crack initiates from the defect under subsurface. The results of this study imply that the fatigue properties at 400°C are highly dependent on the specimen orientations relative to build directions, as the defects close to surface are the mainly cause of the crack initiations.


Author(s):  
Weipeng Duan ◽  
Meiping Wu ◽  
Jitai Han

TC4, which is one of the most widely used titanium alloy, is frequently used in biomedical field due to its biocompatible. In this work, selective laser melting (SLM) was used to manufacture TC4 parts and the printed parts were heat-treated using laser rescanning technology. The experimental results showed that laser rescanning had a high impact on the quality of SLMed part, and a different performance on wear resistance can be found on the basis. It can be seen that the volume porosity of the sample was 7.6 ± 0.5% without using any further processing technology. The volume porosity of the sample processed using laser rescanning strategy was decreased and the square-framed rescanning strategy had a relative optimal volume porosity (1.5 ± 0.3%) in all these five samples. With the further decreasing of volume porosity, the wear resistance decreased at the same time. As its excellent bio-tribological properties, the square-framed rescanning may be a potential suitable strategy to forming TC4 which used in human body.


2021 ◽  
Vol 410 ◽  
pp. 203-208
Author(s):  
I.S. Loginova ◽  
N.A. Popov ◽  
A.N. Solonin

In this work we studied the microstructure and microhardness of standard AA2024 alloy and AA2024 alloy with the addition of 1.5% Y after pulsed laser melting (PLM) and selective laser melting (SLM). The SLM process was carried out with a 300 W power and 0.1 m/s laser scanning speed. A dispersed microstructure without the formation of crystallization cracks and low liquation of alloying elements was obtained in Y-modified AA2024 aluminum alloy. Eutectic Al3Y and Al8Cu4Y phases were detected in Y-modified AA2024 aluminum alloy. It is led to a decrease in the formation of crystallization cracks The uniform distribution of alloying elements in the yttrium-modified alloy had a positive effect on the quality of the laser melting zone (LMZ) and microhardness.


2019 ◽  
Vol 342 ◽  
pp. 11-23 ◽  
Author(s):  
Libo Zhou ◽  
Tiechui Yuan ◽  
Ruidi Li ◽  
Jianzhong Tang ◽  
Guohua Wang ◽  
...  

2020 ◽  
Vol 989 ◽  
pp. 816-820
Author(s):  
Roman Sergeevich Khmyrov ◽  
R.R. Ableyeva ◽  
Tatiana Vasilievna Tarasova ◽  
A.V. Gusarov

Mass transfer in the laser-interaction zone at selective laser melting influences the quality of the obtained material. Powder particles displacement during the formation of the single bead is experimentally studied. The so-called denudated zone was visualized by metallography. It was determined that increasing the powder particle size leads to widening the denudated zone. This can signify that the adhesion forces between powder particles prevail over the friction forces.


2020 ◽  
Vol 795 ◽  
pp. 140000
Author(s):  
Xin Dong ◽  
Yanan Zhou ◽  
Qi Sun ◽  
Yuntao Qu ◽  
Haojiang Shi ◽  
...  

Optik ◽  
2019 ◽  
Vol 176 ◽  
pp. 68-77 ◽  
Author(s):  
Zhaowei Xiang ◽  
Ling Wang ◽  
Chengli Yang ◽  
Ming Yin ◽  
Guofu Yin

Sign in / Sign up

Export Citation Format

Share Document