scholarly journals The Effect of Recrystallization on Creep Properties of Alloy IN939 Fabricated by Selective Laser Melting Process

Metals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1016 ◽  
Author(s):  
Santhosh Banoth ◽  
Chen-Wei Li ◽  
Yo Hiratsuka ◽  
Koji Kakehi

In this research, we studied the creep properties of a selective laser melting (SLM)-processed γ′-strengthened IN939 superalloy along the building direction compared to a conventional cast alloy as a reference specimen. In the as-built condition, high-density dislocations were formed as a result of the SLM process due to the generation of the larger thermal gradient. Post-heat treatment was necessary to obtain specific mechanical properties to match industrial requirements. Two heat treatment conditions were used: the first was lower temperature heat treatment (LTH: solution treatment at 1160 °C/4 h + aging at 850 °C/16 h). The second was higher temperature heat treatment (HTH: solution treatment at 1240 °C/6 h + aging at 850 °C/16 h). Creep tests were conducted at 816 °C/250 MPa. The first and second heat treatment conditions were used for the SLM specimens, but only the first condition was used for the cast alloy (cast-LTH). The SLM specimens in the as-built and LTH conditions showed very poor creep life but good elongation. The poor creep life of the as-built specimen was caused by high dislocation density and the small recrystallized grains formed during testing. In the LTH specimen, poor creep life was due to the formation of the undesirable η phase at the grain boundary, as well as the formation of small recrystallized grains during testing. The creep life of the HTH specimen was 2.7 times longer compared to the LTH specimen. This was because these specimens were covered with recrystallized grains that included low-density dislocations, columnar grain morphology with random orientation, improvement in γ′ precipitate size, and elimination of undesirable η phase. The cast LTH specimen showed longer creep life than SLM specimens because of coarser grains with low-density dislocations, γ′ precipitate coarsening during the creep, and the presence of carbides at grain boundaries. In addition, the cast LTH specimen exhibited lower creep strain rate than SLM specimens also helped in creep life improvement.

2021 ◽  
Vol 105 ◽  
pp. 48-58
Author(s):  
M.A. Abdelgnei ◽  
M.Z. Omar ◽  
M.J. Ghazali ◽  
M.N. Mohammed

The aim of this work is to investigate the optimum heat treatment for Al-5.7Si-2Cu-0.3Mg aluminium alloys and study its effect on microstructure, phase transformations, and hardness. The test specimens were taken from the as-received alloy. Solution treatment was performed at 485°C and 500°C under various solution treatment times for 4, 8, 10, and 12h, and the samples were then hot water quenched at 60°C, followed by aged hardening at 150°C, 170°C and 190°C for 2,6,10, and 14h, and subsequently air-cooled. The hardness of the Al-5.7%Si-2Cu%-0.3%Mg alloys were determined using a Rockwell hardness tester. Scanning electron microscopy (SEM) and optical microscopy (OM) were used to determine the microstructure of the samples, while X-ray diffraction (XRD) was used to identify the phase compositions. The resulting microstructures and hardness values were compared to the corresponding as-cast samples. It can be seen that the solution treatment at 485°C for 12 h and aging at 190°C for 10 h are the optimum T6 heat treatment conditions that would result in hardening precipitates over the as-cast alloy. OM and SEM morphologies show significant microstructure evaluation of improved distribution of the Si particles. After T6 treatment, the morphology of Si particles in the as-cast Al-5.7Si-2Cu-0.3Mg alloy changes from long and coarse plate-like grains to fine spherical shaped grain. The XRD plots confirmed the relatively high concentration of Al, Si, and Al2Cu in the heat treated Al-5.7%Si-2Cu%-0.3%Mg alloy relative to that of the as-cast alloy. The hardness of the T6 alloy also increased.


2013 ◽  
Vol 752 ◽  
pp. 193-197 ◽  
Author(s):  
Tibor Hegyes ◽  
Peter Barkoczy

The softening of Al-Mn base alloys not only depend on the degree of deformation and the parameters of annealing, but the pre-treatment of as-cast alloy. Large extent of the Mn remains in the solid solution during the crystallization process. During a high temperature heat treatment the manganese precipitate from the solid solution phase. The size and amount of the precipitations mainly of the processes takes place during annealing. In this article this effect is studied through the heat treatment and deformation of a specific alloy.


Alloy Digest ◽  
1965 ◽  
Vol 14 (1) ◽  

Abstract Jessair is a manganese, chromium, molybdenum alloy steel combining the deep harding characteristics of air-hardening steels with the simplicity of low temperature heat treatment possible in many oil-hardening steels. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and bend strength as well as fracture toughness and fatigue. It also includes information on forming, heat treating, machining, and joining. Filing Code: TS-157. Producer or source: Jessop Steel Company.


Vsyo o myase ◽  
2020 ◽  
pp. 22-24
Author(s):  
Nasonova V.V. ◽  
◽  
Tunieva E.K. ◽  
Motovilina A.A. ◽  
Mileenkova E.V. ◽  
...  

The paper presents the results of the study on the effect of low-temperature heat treatment on color characteristics and protein oxidation products depending on the method, temperature and duration of heat treatment of culinary products from turkey meat. At present, the use of low-temperature processing in the production technology for meat products with improved organoleptic indices is a topical direction.


Sign in / Sign up

Export Citation Format

Share Document