scholarly journals Effect of Cutting Parameters and Tool Geometry on the Performance Analysis of One-Shot Drilling Process of AA2024-T3

Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 854
Author(s):  
Muhammad Aamir ◽  
Khaled Giasin ◽  
Majid Tolouei-Rad ◽  
Israr Ud Din ◽  
Muhammad Imran Hanif ◽  
...  

Drilling is an important machining process in various manufacturing industries. High-quality holes are possible with the proper selection of tools and cutting parameters. This study investigates the effect of spindle speed, feed rate, and drill diameter on the generated thrust force, the formation of chips, post-machining tool condition, and hole quality. The hole surface defects and the top and bottom edge conditions were also investigated using scan electron microscopy. The drilling tests were carried out on AA2024-T3 alloy under a dry drilling environment using 6 and 10 mm uncoated carbide tools. Analysis of Variance was employed to further evaluate the influence of the input parameters on the analysed outputs. The results show that the thrust force was highly influenced by feed rate and drill size. The high spindle speed resulted in higher surface roughness, while the increase in the feed rate produced more burrs around the edges of the holes. Additionally, the burrs formed at the exit side of holes were larger than those formed at the entry side. The high drill size resulted in greater chip thickness and an increased built-up edge on the cutting tools.

2011 ◽  
Vol 188 ◽  
pp. 429-434 ◽  
Author(s):  
L.P. Yang ◽  
Li Xin Huang ◽  
Cheng Yong Wang ◽  
L.J. Zheng ◽  
Ping Ma ◽  
...  

Supported holes of Printed circuit board (PCB) are drilled with two different drill bits. Drilling force (thrust force and torque) and chip morphology are examined at different cutting parameters, and the effects of the two drills are discussed. The results indicate that the drilling force and chip morphology are affected by the feed rate, spindle speed and drill shape. Thrust force increases with the increasing feed rate, and decreases with the increasing spindle speed. Optimization of drill geometry can reduce the thrust force significantly, and is effective in chip breaking which can improve the chip evacuation during the drilling process.


Carbon Fiber Reinforced Polymer (CFRP) is extensively used in aircraft and automotive industries due to it exceptional material properties such as high strength to weight ratio and corrosion resistance. Nevertheless, micro drilling process of CFRP material poses various challenge as it has irregular material properties along the structure. High cutting force which lead to poor hole quality is one of the issues that always occur when drilling this material. Hence, the understanding on the relationship between process parameter and material behavior is vital to achieve optimum performance of machining process. The experiment was carried out using 2-level factorial design with variable spindle speed range of 8,000 – 12,000 rpm and feed rate range of 0.01-0.015 mm/rev. Micro drill bit with diameter of 0.9 mm was used and new fresh drill were used for every run to avoid tool wear effect. As a result, lower thrust force of 6.3742 N is obtained from the combination of spindle speed 10k rpm and feed rate 0.0125 N. Therefore, it can be concluded that, optimum parameter falls between the range of 8,000 – 12,000 rpm of spindle speed and 0.01-0.015 mm/rev of feed rate. Validation of the optimum parameter suggested from 2-level factorial which are 8,000 rpm and 0.01 mm/rev is executed. The final result obtained shows 4.5% of error from targeted value and this result is absolutely acceptable and portray the reliability of the experiment.


Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1103
Author(s):  
Muhammad Aamir ◽  
Adrian Davis ◽  
William Keeble ◽  
Ugur Koklu ◽  
Khaled Giasin ◽  
...  

The integrity of machined holes depends on many parameters, some of which are related to the cutting tool (geometry, coating, material). Other influential parameters are related to the machining process variables (spindle speed, feed rate, workpiece material), all of which can affect the quality of the hole and drilling induced damage on its surface. This study investigates the effect of uncoated tools and four types of tool coatings (TiN-, TiCN-, TiAlN-, and TiSiN) on the hole quality and its microstructure. The study analyzed several hole geometrical metrics, namely hole size, circularity, cylindricity, and perpendicularity of an Al2024 aluminum alloy using a multi-spindle drilling process that utilizes three drills capable of creating multiple holes simultaneously. The results showed that the uncoated carbide drill gave a high-hole quality at low spindle speed. Regarding the coated drills, TiCN coated drills produced holes with the least deviation, circularity, cylindricity and perpendicularity at high spindle speeds. TiSiN–carbide coated drills produced the most oversized holes and noticeable damage and deformations on their surface following TiAlN and TiN. The common surface damage found on the inner hole surface was smearing, feed marks, and metal debris adhesion. The ANOVA results revealed that the tool type had the highest percentage contribution that mainly affected the hole quality.


2017 ◽  
Vol 748 ◽  
pp. 254-258
Author(s):  
Chang Yi Liu ◽  
Bai Shou Zhang ◽  
Suman Shrestha

Drilling experiments of titanium alloy Ti6Al4V were conducted. Taking the speed and feed as the process variables, a set of experimental cutting forces are obtained and compared. From the experimental results it is concluded that within the experimental extent the thrust force and torque of drilling process rises with the feed rate. The lower spindle speed resulted in the greater amount of thrust. Feed rates have greater influence on the thrust force than the spindle speed. The combination of greater feed rate and lower spindle speed results in the maximum amount of thrust. However, combination of greater feed rate and spindle speed resulted in maximum amount of torque.


2015 ◽  
Vol 1119 ◽  
pp. 622-627 ◽  
Author(s):  
Chye Lih Tan ◽  
Azwan Iskandar Azmi ◽  
Noorhafiza Muhammad

Drilling is an essential secondary process for near net-shape of hybrid composite as to achieve the required dimensional tolerances prior to final application. Dimensional tolerance is often influenced by the surface integrity or surface roughness of the workpart. Thus, this paper aims to employ the Taguchi and response surface methodologies in minimizing the surface roughness of drilled carbon-glass hybrid fibre reinforced polymer (CGCG) using tungsten carbide, K20 drill bits. The effects of spindle speed, feed rate and tool geometry on surface roughness were evaluated and optimum cutting conditions for minimizing the aforementioned response was determined. Subsequently, response surface methodology (RSM) was utilised in finding the empirical relationships between experimental parameters and surface roughness based on the Taguchi results. The experimental analyses reveal that surface roughness is greatly influenced by feed rate and tool geometry rather than the spindle speed. This is due to the increment of feed that attributed to the increased strain rate and hence, deteriorated the surface roughness of the hybrid composite. The predicted results (via regression model) and theoretical results (via additivity law) were in good agreement with experiment results. This indicates that the regression model from response surface methodology (RSM) can be used to predict the surface roughness in machining of CGCG hybrid composite.


2019 ◽  
Vol 9 (01) ◽  
pp. 1-5
Author(s):  
Angga Sateria

Glass fiber reinforced polymer (GFRP)-stainless steel stacks used in the aircraft structural components. The assembly process of this components requires mechanical joining using bolt and nut. The drilling process is commonly used for producing hole to position the bolt correctly. Thrust force and torque are responses that used to evaluate the performance of drilling process. The quality characteristic of these responses are “smaller-is-better.” The aim of this experiment is to identify the combination of process parameters for achieving required multiple performance characteristics in drilling process of GFRP-stainless steel stacks materials. The three important process parameters, i.e., point angle, spindle speed, and feed rate were used as input parameters. Point angle was set at two different levels, whilethe other two were set at three different levels. Hence, a 2 x 3 x 3 full factorial was used as designexperiments. The experiments were replicated two times. The optimization was conducted by using genetic algorithm method. The minimum thrust force and torque could be obtained by using point angle, spindle speed and feed rate of 118o, 2383 rpm, 62 mm/min respectively.


2015 ◽  
Vol 818 ◽  
pp. 233-238
Author(s):  
Krzysztof Szwajka

Particleboard is a wood based composite extensively used in wood working. Drilling is the most commonly used machining process in furniture industries. The surface characteristics and the damage free drilling are significantly influenced by the machining parameters. The thrust force developed during drilling play a major role in gaining the surface quality and minimizing the delamination tendency. In this study trials were made eighteen durability tools for different values of the parameters analyzed cut. Based on the results obtained from the study, the effect of cutting parameters selected signals of axial force and torque cutting. Proposed mathematical models using ANOVA, allowing to estimate the cutting forces.


2012 ◽  
Vol 622-623 ◽  
pp. 1285-1289 ◽  
Author(s):  
T.N. Valarmathi ◽  
K. Palanikumar ◽  
S. Sekar

Medium density fiberboard (MDF) is an engineered wood generally used in wooden industries. Drilling is the most frequently used machining operation in the assembly of furniture working. During drilling cutting forces are developed. These cutting forces are affecting the surface qualities and also causes delamination damage. The cutting conditions and the process parameters play an important role in controlling the cutting forces. The objective of this work is to study the influence of cutting parameters such as spindle speed, feed rate and point angle to reduce the cutting forces developed during drilling. Drilling tests are conducted using Taguchi design of experiments. The mathematical model is developed using response surface methodology (RSM) to evaluate the influence of spindle speed, feed rate and point angle on thrust force. It is seen that high spindle speed with low feed rate combination gives better results in drilling of MDF panels.


2018 ◽  
Vol 877 ◽  
pp. 177-182 ◽  
Author(s):  
Kundan Patel ◽  
Keval Patel ◽  
Piyush Gohil ◽  
Vijaykumar Chaudhary

The machinability of fiber reinforced composites is emphatically affected not only by the kind of fiber used in the composite but also by its properties. Milling composite materials is a very usual and plays a vital role for the assembly of composite structures. However, milling of composites is a somewhat complicated errand inferable from the heterogeneity of the material and a plenty of different issues, for instance, delamination factor, which show up amid the machining process and are connected with the qualities of the material and the cutting parameters. Present study looks into the influence of spindle speed, feed rate and depth of cut on thrust force, torque and delamination factor in hemp fiber reinforced polyester composites. The composite specimens were formulated using hand lay-up method. The analysis for attaining the optimality condition is performed using ANOVA and regression model. It was observed that the grouping of the inferior value of feed (0.1 mm/rev), lower spindle speed (1500 rpm) as well as the lower depth of cut (1.5 mm) results in minimum delamination factor and torque. The feed was found to be more significant than the depth of cut for thrust force.


Author(s):  
Panchagnula Kishore Kumar ◽  
Panchagnula Jayaprakash Sharma

Abstract Drilling is most commonly used secondary machining process for structural joining of Glass Fiber Reinforced Plastic (GFRP) composites. Performing drilling operations on GFRPs/Multi-Walled CarbonNanoTubes (MWCNTs) reinforced GFRPs is really a challenging task due to their non-homogeneity and anisotropic behavior, which directs to generation of material damages. The prime focus of current work is to identify the suitable process parameters for enhancing the performance of drilling of GFRP nanocomposites. In this study, the drilling experiments are conducted on 0.3wt.% MWCNT-GFRP nanocomposites with solid carbide, TiCN and TiAlN coated drills (6mm diameter) under dry and chilled air cutting environments. The dry drilling experiments are conducted without any assistance of cooling fluid in ambient condition. The chilled air at a temperature of 3°C was supplied from the vortex tube. Experimental data is used for ANOVA (balanced) analysis. The cutting parameters such as feed rate, cutting speed and tool type (coating) are considered as input and the measured thrust force, delamination factor and AE RMS signal are treated as output responses. From ANOVA results, it is observed that the influence of feed rate is more on thrust force as compared to cutting speed. The coefficients of determination (R2) shows good fit between thrust force and cutting parameters and the corresponding confidence levels are above 98% for all cutting environments. Similarly, R2 values of delamination factor and AE RMS signals are above 90% and 96% respectively. The minimum thrust force and torque values are noted as 12.61 N and 0.152 N-m respectively at lower feed rate (10 mm/min) and higher cutting speed (1500 RPM) using TiCN coated drill under chilled air cutting environment. The delamination factor is also low (1.025) under the same cutting conditions of minimum cutting forces. A good correlation exists between the thrust force vs. delamination factor (> 0.85) and the delamination factor vs. AE RMS signal (> 0.80) for the selected cutting environments. The recommended range of RMS voltage is 0.083 to 0.121 volts for producing the delamination free holes on GFRP nanocomposites.


Sign in / Sign up

Export Citation Format

Share Document