Cast Structure in Alloy A286, an Iron-Nickel Based Superalloy
The structure and segregation of a continuously cast iron-nickel based superalloy were investigated. Cross-sectional samples were prepared from the central section of a 150 × 150 mm square billet. The microporosity was measured from the surface to the center and theoretical conditions for pore formation were investigated. A central porosity, up to 10 mm in width, was present in the center of the billet. The measured secondary arm spacing was correlated with a calculated cooling rate and a mathematical model was obtained. Spinel particles were found in the structure, which acted as inoculation points for primary austenite and promoted the formation of the central equiaxed zone. Titanium segregated severely in the interdendritic areas and an increase of Ti most likely lead to a significant decrease in the hot ductility. Precipitates were detected in an area fraction of approximately 0.55% across the billet, which were identified as Ti(CN), TiN, η-Ni3Ti, and a phosphide phase.