scholarly journals Synthesis of Printable Polyvinyl Alcohol for Aerosol Jet and Inkjet Printing Technology

Micromachines ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 220
Author(s):  
Mahmuda Akter Monne ◽  
Chandan Qumar Howlader ◽  
Bhagyashree Mishra ◽  
Maggie Yihong Chen

Polyvinyl Alcohol (PVA) is a promising polymer due to its high solubility with water, availability in low molecular weight, having short polymer chain, and cost-effectiveness in processing. Printed technology is gaining popularity to utilize processible solution materials at low/room temperature. This work demonstrates the synthesis of PVA solution for 2.5% w/w, 4.5% w/w, 6.5% w/w, 8.5% w/w and 10.5% w/w aqueous solution was formulated. Then the properties of the ink, such as viscosity, contact angle, surface tension, and printability by inkjet and aerosol jet printing, were investigated. The wettability of the ink was investigated on flexible (Kapton) and non-flexible (Silicon) substrates. Both were identified as suitable substrates for all concentrations of PVA. Additionally, we have shown aerosol jet printing (AJP) and inkjet printing (IJP) can produce multi-layer PVA structures. Finally, we have demonstrated the use of PVA as sacrificial material for micro-electro-mechanical-system (MEMS) device fabrication. The dielectric constant of printed PVA is 168 at 100 kHz, which shows an excellent candidate material for printed or traditional transistor fabrication.

Author(s):  
Roozbeh Ross Salary ◽  
Jack P. Lombardi ◽  
Darshana L. Weerawarne ◽  
Prahalad K. Rao ◽  
Mark D. Poliks

Abstract The goal of this work is to forward a comprehensive framework, relating to the most recent research works carried out in the area of flexible and hybrid electronics (FHE) fabrication with the aid of aerosol jet printing (AJP) additive manufacturing process. In pursuit of this goal, the objective is to review and classify a wide range of articles, published recently, concerning various aspects of AJP-based device fabrication, such as material synthesis, process monitoring, and control. AJP has recently emerged as the technique of choice for integration as well as fabrication of a broad spectrum of electronic components and devices, e.g., interconnects, sensors, transistors, optical waveguides, quantum dot arrays, photodetectors, and circuits. This is preeminently because of advantages engendered by AJP process. AJP not only allows for high-resolution deposition of microstructures, but also accommodates a wide renege of ink viscosity. However, AJP is intrinsically complex and prone to gradual drifts of the process output (stemming from ink chemistry and formulation). Consequently, a large number of research works in the literature has focused on in situ process characterization, real-time monitoring, and closed-loop control with the aim to make AJP a rapid, reliable, and robust additive manufacturing method for the manufacture of flexible and hybrid electronic devices. It is expected that the market for flexible electronics will be worth over $50 billion by 2020 [1].


2012 ◽  
Vol 441 ◽  
pp. 179-182 ◽  
Author(s):  
Fang Lan Guan ◽  
Jian Ming Wang

An inkjet printing technology that combines printing and anti-crease in one process was developed for silk. Epoxy resin added to the pretreatment paste formulations was used as crease-resistant finishing agent for silk. The fabrics thus processed had satisfactory K/S color yield and colorfastness that were the same as the color quality from conventional inkjet printing. In addition, both dry and wet resiliencies of printed silk fabrics have been improved significantly especially the wet resiliency.


Author(s):  
H. L. Tsai ◽  
J. W. Lee

Growth of GaAs on Si using epitaxial techniques has been receiving considerable attention for its potential application in device fabrication. However, because of the 4% lattice misfit between GaAs and Si, defect generation at the GaAs/Si interface and its propagation to the top portion of the GaAs film occur during the growth process. The performance of a device fabricated in the GaAs-on-Si film can be degraded because of the presence of these defects. This paper describes a HREM study of the effects of both the substrate surface quality and postannealing on the defect propagation and elimination.The silicon substrates used for this work were 3-4 degrees off [100] orientation. GaAs was grown on the silicon substrate by molecular beam epitaxy (MBE).


2019 ◽  
Vol 7 (21) ◽  
pp. 6426-6432 ◽  
Author(s):  
Denis S. Kolchanov ◽  
Vladislav Slabov ◽  
Kirill Keller ◽  
Ekaterina Sergeeva ◽  
Mikhail V. Zhukov ◽  
...  

The article describes an easy-to-implement and print-ready composition for inkjet printing of magnetic structures, which can be used for security printing, coding, and marking, magnetic device fabrication or creation of micro-antennas.


2021 ◽  
Vol 48 ◽  
pp. 101264
Author(s):  
Haining Zhang ◽  
Joon Phil Choi ◽  
Seung Ki Moon ◽  
Teck Hui Ngo

2013 ◽  
Vol 126 (2) ◽  
pp. 611-611
Author(s):  
Mutalifu Abulikemu ◽  
Eman Husni Da'as ◽  
Hanna Haverinen ◽  
Dongkyu Cha ◽  
Mohammad Azad Malik ◽  
...  

2021 ◽  
pp. 102325
Author(s):  
D.R. Hines ◽  
Y. Gu ◽  
A.A. Martin ◽  
P. Li ◽  
J. Fleischer ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Yahiea Al-Naiemy ◽  
Taha A. Elwi ◽  
Haider R. Khaleel ◽  
Hussain Al-Rizzo

We present a systematic approach for producing microstrip antennas using the state-of-the-art-inkjet printing technique. An initial antenna design based on the conventional square patch geometry is adopted as a benchmark to characterize the entire approach; the procedure then could be generalized to different antenna geometries and feeding techniques. For validation purposes, the antenna is designed and simulated using two different 3D full-wave electromagnetic simulation tools: Ansoft’s High Frequency Structure Simulator (HFSS), which is based on the Finite Element Method (FEM), and CST Microwave Studio, which is based on the Finite Integration Technique (FIT). The systematic approach for the fabrication process includes the optimal number of printed layers, curing temperature, and curing time. These essential parameters need to be optimized to achieve the highest electrical conductivity, trace continuity, and structural robustness. The antenna is fabricated using Inkjet Printing Technology (IJPT) utilizing Sliver Nanoparticles (SNPs) conductive ink printed by DMP-2800 Dimatix FujiFilm materials printer.


Sign in / Sign up

Export Citation Format

Share Document