scholarly journals Flubendiamide Enhances Adipogenesis and Inhibits AMPKα in 3T3-L1 Adipocytes

Molecules ◽  
2018 ◽  
Vol 23 (11) ◽  
pp. 2950 ◽  
Author(s):  
Quancai Sun ◽  
Jie Lin ◽  
Yukui Peng ◽  
Ruichang Gao ◽  
Ye Peng

Flubendiamide, a ryanoid class insecticide, is widely used in agriculture. Several insecticides have been reported to promote adipogenesis. However, the potential influence of flubendiamide on adipogenesis is largely unknown. The current study was therefore to determine the effects of flubendiamide on adipogenesis utilizing the 3T3-L1 adipocytes model. Flubendiamide treatment not only enhanced triglyceride content in 3T3-L1 adipocytes, but also increased the expression of cytosine-cytosine-adenosine-adenosine-thymidine (CCAAT)/enhancer-binding protein α and peroxisome proliferator-activated receptor gamma-γ, two important regulators of adipocyte differentiation. Moreover, the expression of the most important regulator of lipogenesis, acetyl coenzyme A carboxylase, was also increased after flubendiamide treatment. Further study revealed that 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) or A769662, two Adenosine 5′-monophosphate (AMP)-activated protein kinase α activators, subverted effects of flubendiamide on enhanced adipogenesis. Together, these results suggest that flubendiamide promotes adipogenesis via an AMPKα-mediated pathway.

Biomolecules ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1025
Author(s):  
Ahmed Alalaiwe ◽  
Jia-You Fang ◽  
Hsien-Ju Lee ◽  
Chun-Hui Chiu ◽  
Ching-Yun Hsu

Curcumin is a known anti-adipogenic agent for alleviating obesity and related disorders. Comprehensive comparisons of the anti-adipogenic activity of curcumin with other curcuminoids is minimal. This study compared adipogenesis inhibition with curcumin, demethoxycurcumin (DMC), and bisdemethoxycurcumin (BDMC), and their underlying mechanisms. We differentiated 3T3-L1 cells in the presence of curcuminoids, to determine lipid accumulation and triglyceride (TG) production. The expression of adipogenic transcription factors and lipogenic proteins was analyzed by Western blot. A significant reduction in Oil red O (ORO) staining was observed in the cells treated with curcuminoids at 20 μM. Inhibition was increased in the order of curcumin < DMC < BDMC. A similar trend was observed in the detection of intracellular TG. Curcuminoids suppressed differentiation by downregulating the expression of peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer-binding protein α (C/EBPα), leading to the downregulation of the lipogenic enzymes acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS). AMP-activated protein kinase α (AMPKα) phosphorylation was also activated by BDMC. Curcuminoids reduced the release of proinflammatory cytokines and leptin in 3T3-L1 cells in a dose-dependent manner, with BDMC showing the greatest potency. BDMC at 20 μM significantly decreased leptin by 72% compared with differentiated controls. Molecular docking computation indicated that curcuminoids, despite having structural similarity, had different interaction positions to PPARγ, C/EBPα, and ACC. The docking profiles suggested a possible interaction of curcuminoids with C/EBPα and ACC, to directly inhibit their expression.


Nutrients ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1988 ◽  
Author(s):  
Park ◽  
Kim ◽  
Jung ◽  
Ahn ◽  
Kwak ◽  
...  

Obesity is a global health threat. Herein, we evaluated the underlying mechanism of anti-obese features of bitter orange (Citrus aurantium Linné, CA). Eight-week-administration of CA in high fat diet-induced obese C57BL/6 mice resulted in a significant decrease of body weight, adipose tissue weight and serum cholesterol. In further in vitro studies, we observed decreased lipid droplets in CA-treated 3T3-L1 adipocytes. Suppressed peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT/enhancer binding protein alpha indicated CA-inhibited adipogenesis. Moreover, CA-treated primary cultured brown adipocytes displayed increased differentiation associated with elevation of thermogenic factors including uncoupling protein 1 and PPARγ coactivator 1 alpha as well. The effects of CA in both adipocytes were abolished in AMP-activated protein kinase alpha (AMPKα)-suppressed environments, suggesting the anti-adipogenic and pro-thermogenic actions of CA were dependent on AMPKα pathway. In conclusion, our results suggest CA as a potential anti-obese agent which regulates adipogenesis and thermogenesis via AMPKα.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Mi-Young Jeong ◽  
Hye-Lin Kim ◽  
Jinbong Park ◽  
Hyo-Jin An ◽  
Sung-Hoon Kim ◽  
...  

Rubi Fructus (RF) is known to exert several pharmacological effects including antitumor, antioxidant, and anti-inflammatory activities. However, its antiobesity effect has not been reported yet. This study was focused on the antidifferentiation effect of RF extract on 3T3-L1 preadipocytes. When 3T3-L1 preadipocytes were differentiating into adipocytes, 10–100 μg/mL of RF was added. Next, the lipid contents were quantified by Oil Red O staining. RF significantly reduced lipid accumulation and downregulated the expression of peroxisome proliferator-activated receptorγ(PPARγ), CCAAT0-enhancer-binding proteinsα(C/EBPα), adipocyte fatty acid-binding protein 2 (aP2), resistin, and adiponectin in ways that were concentration dependent. Moreover, RF markedly upregulated liver kinase B1 and AMP-activated protein kinase (AMPK). Interestingly, pretreatment with AMPKαsiRNA and RF downregulated the expression of PPARγand C/EBPαprotein as well as the adipocyte differentiation. Our study shows that RF is capable of inhibiting the differentiation of 3T3-L1 adipocytes through the modulation of PPARγ, C/EBPα, and AMPK, suggesting that it has a potential for therapeutic application in the treatment or prevention of obesity.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Kousei Ohshima ◽  
Masaki Mogi ◽  
Masatsugu Horiuchi

Vascular inflammation plays a crucial role in atherosclerosis, and its regulation is important to prevent cerebrovascular and coronary artery disease. The inflammatory process in atherogenesis involves a variety of immune cells including monocytes/macrophages, lymphocytes, dendritic cells, and neutrophils, which all express peroxisome proliferator-activated receptor-γ(PPAR-γ). PPAR-γis a nuclear receptor and transcription factor in the steroid superfamily and is known to be a key regulator of adipocyte differentiation. Increasing evidence from mainly experimental studies has demonstrated that PPAR-γactivation by endogenous and synthetic ligands is involved in lipid metabolism and anti-inflammatory activity. In addition, recent clinical studies have shown a beneficial effect of thiazolidinediones, synthetic PPAR-γligands, on cardiovascular disease beyond glycemic control. These results suggest that PPAR-γactivation is an important regulator in vascular inflammation and is expected to be a therapeutic target in the treatment of atherosclerotic complications. This paper reviews the recent findings of PPAR-γinvolvement in vascular inflammation and the therapeutic potential of regulating the immune system in atherosclerosis.


Endocrinology ◽  
2004 ◽  
Vol 145 (11) ◽  
pp. 4948-4956 ◽  
Author(s):  
Masataka Kudo ◽  
Akira Sugawara ◽  
Akira Uruno ◽  
Kazuhisa Takeuchi ◽  
Sadayoshi Ito

Abstract TNFα is known to inhibit adipocyte differentiation and induce insulin resistance. Moreover, TNFα is known to down-regulate peroxisome proliferator-activated receptor (PPAR)γ2, an adipocyte-specific nuclear receptor of insulin-sensitizer thiazolidinediones. To clarify molecular mechanisms of TNFα- mediated PPARγ2 down-regulation, we here examined the effect of TNFα on transcription regulation of PPARγ2 gene expression during the early stage of adipocyte differentiation. 3T3-L1 preadipocytes (2 d after 100% confluent) were incubated in a differentiation mixture (dexamethasone, insulin, 3-isobutyl-1-methlxanthine), with or without 50 ng/ml TNFα, for 24 h. TNFα significantly decreased PPARγ2 expression both at mRNA and protein levels (to ∼40%), as well as aP2 mRNA expression. The mouse PPARγ2 gene promoter region (2.2-kb) was isolated and was used for luciferase reporter assays by transient transfection. TNFα significantly suppressed PPARγ2 gene transcription (to ∼50%), and deletion analyses demonstrated that the suppression was mediated via CCAAT/enhancer-binding protein (C/EBP) binding elements at the −320/−340 region of the promoter. Moreover, TNFα significantly decreased expression of C/EBPδ mRNA and protein levels (to ∼40%). EMSA, using 3T3-L1 cells nuclear extracts with the −320/−340 region as a probe, demonstrated the binding of C/EBPδ to the element, which was significantly decreased by TNFα treatment. Overexpression of CEBP/δ prevented the TNFα-mediated suppression of PPARγ2 transactivation. Taken together, TNFα suppresses PPARγ2 gene transcription by the inhibition of C/EBPδ expression and its DNA binding during the early stage of adipocyte differentiation, which may contribute to the inhibition of adipocyte differentiation, as well as the induction of insulin resistance.


Sign in / Sign up

Export Citation Format

Share Document