scholarly journals Unveiling the Differential Antioxidant Activity of Maslinic Acid in Murine Melanoma Cells and in Rat Embryonic Healthy Cells Following Treatment with Hydrogen Peroxide

Molecules ◽  
2020 ◽  
Vol 25 (17) ◽  
pp. 4020
Author(s):  
Khalida Mokhtari ◽  
Amalia Pérez-Jiménez ◽  
Leticia García-Salguero ◽  
José A. Lupiáñez ◽  
Eva E. Rufino-Palomares

Maslinic acid (MA) is a natural triterpene from Olea europaea L. with multiple biological properties. The aim of the present study was to examine MA’s effect on cell viability (by the MTT assay), reactive oxygen species (ROS levels, by flow cytometry) and key antioxidant enzyme activities (by spectrophotometry) in murine skin melanoma (B16F10) cells compared to those on healthy cells (A10). MA induced cytotoxic effects in cancer cells (IC50 42 µM), whereas no effect was found in A10 cells treated with MA (up to 210 µM). In order to produce a stress situation in cells, 0.15 mM H2O2 was added. Under stressful conditions, MA protected both cell lines against oxidative damage, decreasing intracellular ROS, which were higher in B16F10 than in A10 cells. The treatment with H2O2 and without MA produced different responses in antioxidant enzyme activities depending on the cell line. In A10 cells, all the enzymes were up-regulated, but in B16F10 cells, only superoxide dismutase, glutathione S-transferase and glutathione peroxidase increased their activities. MA restored the enzyme activities to levels similar to those in the control group in both cell lines, highlighting that in A10 cells, the highest MA doses induced values lower than control. Overall, these findings demonstrate the great antioxidant capacity of MA.

Author(s):  
Khalida Mokhtari ◽  
Amalia Pérez-Jiménez ◽  
Leticia García-Salguero ◽  
José Antonio Lupiáñez ◽  
Eva E. Rufino-Palomares

Maslinic acid (MA) is a natural triterpene from Olea europaea whose pharmacological functions have been showed. The objective of this study was to examine MA effect on cell viability (by MTT assay), reactive oxygen species (ROS levels, by flow cytometry) and key anti-oxidant enzyme activities (by spectrophotometry) in murine skin melanoma (B16F10) cells compared to healthy cells (A10). MA induced cytotoxic effects in cancer cells (IC50 42 µM) whereas no effect was found in A10 cells treated with MA (up to 210 µM). In order to produce a stress situation in cells, 0.15 mM of H2O2 were added. Under stressful conditions, MA protected both cell lines against oxidative damage, decreasing intracellular ROS, being higher in B16F10 than in A10 cells. The treatment with H2O2 and without MA produced different responses in anti-oxidant enzymes activities depending on cell line. In A10 cells, all enzymes were up-regulated, but in B16F10 cells only superoxide dismutase, glutathione S-transferase and glutathione peroxidase increased their activities. MA restored the enzyme activities to similar levels than control group in both cell lines, highlighting that in A10 cells the highest MA doses induced values lower than control. Overall, these findings demonstrate the great anti-oxidant capacity of MA.


Animals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2585
Author(s):  
Fang Jiang ◽  
Yan Lin ◽  
Linghong Miao ◽  
Jingyuan Hao

The ability of bamboo charcoal to reduce the negative effects of high dietary selenium (Se) concentrations was assessed by feeding juvenile blunt snout bream (Megalobrama amblycephala) one of five Se-rich diets (1.5 mg/kg Se; 36% protein, 8.7% lipid) containing graded levels (0–4 g/kg) of bamboo charcoal powder for eight weeks. There were four tanks (350 L) of fish (initial weight 16.0 ± 0.5 g) for each treatment, and the fish were fed to satiation four times each day. At the end of the feeding trial, all of the fish from each tank were weighed to calculate the growth performance. Blood samples were firstly obtained to collect plasma for the biochemical indexes determination. Liver tissues were then collected to determine the antioxidant enzyme activities and gene expression. Dorsal muscles were also collected to determine the nutrient composition. The results show that when the bamboo charcoal content in the Se-rich feed ranged between 0 and 3 g/kg, the weight growth rate (WGR) and specific growth rate (SGR) values increased with the higher dietary bamboo charcoal content, and the maximum WGR and SGR values were achieved when the bamboo charcoal content in the Se-rich feed was 2–3 g/kg (p < 0.05). The Se content in muscle tissues decreased significantly with the increased bamboo charcoal content (p < 0.05) in the Se-rich feed, which ranged from 0 to 4 g/kg. When the bamboo charcoal content in the Se-rich feed was 2–3 g/kg, the levels of glucose (GLU) and albumin (ALB) in plasma reached a maximum (p < 0.05), whereas the level of alkaline phosphatase (ALP) reached a minimum (p < 0.05). Additionally, the activities of catalase (CAT), total superoxide dismutase (T-SOD), total antioxidative capacity (T-AOC), and glutathione peroxidase (GSH-Px) were significantly enhanced (p < 0.05) when the bamboo charcoal content was 3 g/kg. In contrast, the malondialdehyde (MDA) level increased sharply when the bamboo charcoal content in the Se-rich feed was 1 g/kg, compared to the control group and the groups supplemented with 2–3 g/kg bamboo charcoal (p < 0.05). Regarding mRNA-level gene expression, the results show that dietary supplementation with 0 to 3 g/kg of bamboo charcoal increased the expression of keap1 and nrf2, whereas nfkb expression was inhibited (p < 0.05). The mRNA expression of the antioxidant enzymes cat, gpx, and mn-sod was consistently enhanced in the group fed with the 3 g/kg bamboo charcoal diet (p < 0.05). The expression of the pro-inflammatory cytokines tnfα and tgfβ was inhibited in the groups supplemented with 2–3 g/kg bamboo charcoal, whereas the expression of anti-inflammatory cytokines (il10) increased in the bamboo charcoal supplementation groups compared to the control group (p < 0.05). Generally, supplementation with 2–3 g/kg of bamboo charcoal in Se-rich feed improved the growth performance, physiological status, and antioxidant enzyme activities of blunt snout bream. Moreover, bamboo charcoal supplementation in Se-rich diets stimulated the antioxidant system and inhibited the inflammatory response by activating Nrf2-Keap1 and suppressing NF-κB.


2008 ◽  
Vol 53 (No. 12) ◽  
pp. 517-523 ◽  
Author(s):  
J. Csiszár ◽  
E. Lantos ◽  
I. Tari ◽  
E. Madoşă ◽  
B. Wodala ◽  
...  

We compared the enzymatic antioxidative defence mechanisms of some regional subspecies of <I>Allium (A. cepa </I>L., <I>A. ascalonicum</I> auct. hort., A.<I> sativum</I> L.) cultivated mainly in the western regions of Romania, and two modern Hungarian climate resistant F <sub>1</sub> hybrids. The variability in the activities of antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), glutathione reductase (GR) and glutathione S-transferase (GST) and their changes under soil moisture stress were investigated. 1-week-long water stress revealed that among three <I>Allium</I> species, relative water content decreased only in <I>A. ascalonicum</I> leaves (up to 16%). Unlike root enzymes, the activities of the shoot enzymes, especially POD, GR and GST showed a stronger correlation with the water content of the leaves after one week of water withdrawal; regression coefficients (<I>R</I><sup>2</sup>) were 0.359, 0.518 and 0.279, respectively. The ancient populations with elevated (or highly inducible) antioxidant enzyme activities may be interesting for further research and for breeding of new <I>Allium</I> varieties.


2019 ◽  
Vol 89 (3-4) ◽  
pp. 161-167 ◽  
Author(s):  
Reza Mahdavi ◽  
Tannaz khabbazi ◽  
Javid Safa

Abstract. Background: Cardiovascular disease (CVD) is the main cause of death in hemodialysis (HD) patients and oxidative stress is an important risk factor for CVD. Superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) are primary antioxidant enzymes in human cells acting against toxic reactive oxygen species (ROS) and their reduced activity may contribute to oxidative disorders in HD patients. Alpha lipoic acid (ALA) as a potent strong antioxidant may affect these enzymes. Objective: We examined the effects of ALA supplementation on antioxidant enzyme activities in HD patients. Method: In this double-blinded, randomized clinical trial, 63 HD patients (43 males and 20 females; age range: 22–79 years) were assigned into the ALA group (n: 31), receiving a daily dose of ALA (600 mg), or a control group (n: 32), receiving placebo for 8 weeks. Body mass index (BMI), antioxidant enzymes, albumin (Alb) and hemoglobin (Hb) were determined before and after intervention. Results: At baseline, the mean blood activities of SOD, GPx, and CAT in ALA group were 1032±366, 18.9±5.09 and 191±82.7 U/gHb which increased at the end of study to 1149±502, 19.1±7.19 and 208±86.6 U/gHb respectively. However, only the increase of SOD was statistically significant in comparison with placebo group (P = 0.04). The mean levels of Alb, Hb, weight and BMI were not significantly changed in study groups (P>0.05). Conclusion: ALA may be beneficial for HD patients by increasing the activity of antioxidant enzymes; however, further studies are needed to achieve precise results.


2019 ◽  
Vol 44 (7) ◽  
pp. 774-782 ◽  
Author(s):  
Sevda Tanrıkulu-Küçük ◽  
Canan Başaran-Küçükgergin ◽  
Muhammed Seyithanoğlu ◽  
Semra Doğru-Abbasoğlu ◽  
Hikmet Koçak ◽  
...  

This study investigated the effects of curcumin and capsaicin on testicular and hepatic oxidant–antioxidant status in rats fed a high-fat diet (HFD). Male Sprague–Dawley rats were divided into 5 groups (8 rats per group). The control group was fed a normal control diet (standard laboratory chow), the HFD group was fed HFD (60% of total calories from fat), the HFD+CUR group received HFD supplemented with curcumin (1.5 g curcumin/kg HFD), the HFD+CAP group was given HFD supplemented with capsaicin (0.15 g capsaicin/kg HFD), and the HFD+CUR+CAP group received HFD supplemented with curcumin and capsaicin for 16 weeks. Hepatic and testicular thiobarbituric acid reactive substances (TBARS), reactive oxygen species (ROS), glutathione (GSH) levels, glutathione transferase activity, and Cu-Zn superoxide dismutase, glutathione peroxidase, and catalase protein expression and enzyme activities were measured. Protein expression was determined by Western blotting. GSH levels and antioxidant enzyme activities were measured with colorimetric methods. HFD slightly increased hepatic and testicular oxidative stress parameters. GSH levels did not change between groups. TBARS and ROS levels were significantly reduced in the HFD+CUR+CAP group compared with the HFD group. Liver and testis antioxidant enzyme activities and expression increased significantly with combined capsaicin and curcumin treatment. Curcumin and capsaicin treatment attenuated testicular and hepatic oxidative stress and enhanced the antioxidant defense system. The combination of capsaicin and curcumin with HFD seems to have some remarkable and beneficial effects on testicular oxidative damage in the fatty liver rat model.


2019 ◽  
Vol 12 (6) ◽  
pp. 834-843 ◽  
Author(s):  
Hesham Attia Shedeed ◽  
Bahaa Farrag ◽  
Eman Ali Elwakeel ◽  
Ibrahim Samir Abd El-Hamid ◽  
Muhammed Ahmed Hilmy El-Rayes

Aim: The present study was conducted to study the effect of propolis administration on bio-hematological parameters, antioxidant enzyme activities, and productivity of Barki ewes during late pregnancy and lactation under the arid conditions. Materials and Methods: Twenty-five pregnant Barki ewes were fed the basal diet (n=12, control) and the basal diet plus propolis (5 g/kg diet, n=13) for 1 month before parturition and continued 2 months after parturition. Milk yield and milk composition, hematological constituents, antioxidant enzyme activities, thyroid hormones, and lambs birth and weaning weights, and antioxidants were determined. Results: Significant (p<0.05) increase in white blood cells in the propolis group compared to control was observed. Mean corpuscular hemoglobin (Hb) (MCH) and corpuscular Hb (MCH concentration %) were decreased (p<0.05) in propolis compared to control group. Milk yield was increased (p<0.05) in the propolis group compared with control and continued to increase with the advancement of lactation. Milk fat and milk total solids increased (p<0.05) in the propolis group than the control. Plasma immunoglobulin A (IgA) was increased (p<0.05) in propolis compared to control with no effect in IgM and IgG. Superoxide dismutase, hydrogen peroxide (HP), and nitric oxide were decreased (p<0.01) in the propolis group compared to control. Weaning weight for lambs born to ewes fed propolis was increased (p<0.05) at week 8 after birth compared with control lambs. Malondialdehyde and HP activities were decreased (p<0.01) in lambs born to propolis ewes compared to control. Conclusion: Crude Chinese propolis (5 g/d) supplementation improved milk yield, milk composition, and the antioxidant enzymes in Barki ewes and immune functions, growth performance and antioxidant status in their lambs under arid conditions.


2019 ◽  
Vol 5 (4) ◽  
pp. 145-150
Author(s):  
Uyovwiesevwa Ataihire Johnson ◽  
◽  
Eze Kingsley Nwangwa ◽  
John Chukwuka Igweh ◽  
◽  
...  

Antioxidants are specialized macro-molecules that neutralize harmful substances; free radicals. These radicals supposedly harm tissues, destroy food items, and damage materials. In living organisms, antioxidants can take the form of enzymes, and may be regularly added to oils, metals, foodstuffs, as well as numerous other materials to mitigate the damaging effect of free radical. Current study was designed to investigate the biochemical changes in antioxidant enzyme activities, following administration of Silybum marianum (an ancient medicinal plant of the Carduus marianum family) on Alloxan-Induced, diabetic rats. One hundred and twenty-five (125) rats were procured, made to acclimatize for two weeks, and then randomly grouped into five (5) groups of (n=25). Group 1: Non-Diabetic (Control) rats, Group 2 diabetic untreated rats, while groups 3, 4 and 5 comprised of vitamin-C treated rats (diabetic), Silymarin (extract), and Vitamin C + Silymarin (extract) combined treatment respectively. After four weeks of treatment with test extract, animals were then sacrificed, and blood samples collected and assayed for biochemical [anti-oxidant] enzyme activity. Upon statistical analysis, one way Analysis of variance (ANOVA) showed Catalase (CAT), superoxide dismutase (SOD) and malonaldehyde (MDA) activities to have significantly decreased for extract + vitamin C treated group (Group V) when compared with control (Group I). It was also noted that the use of the combined antioxidants vitamin C and silymarin resulted in a significant reduction in ROS production with decreased SOD and CAT enzyme activities. It is therefore likely that, improvements in antioxidant enzyme activities are a function of extract and/or Vitamin C administration to animals. Thus, Silymarin has antioxidant and regenerative potentials to damaged tissues.


2009 ◽  
Vol 78 (1) ◽  
pp. 75-83 ◽  
Author(s):  
Pınar Tatlı Seven ◽  
Seval Yılmaz ◽  
Ismail Seven ◽  
Ibrahim H. Cercı ◽  
Mehmet A. Azman ◽  
...  

In this study, we investigated the antioxidant activity of ethanol extracts of propolis (EEP) and vitamin C on biochemical indicators and antioxidant enzyme activities of broilers exposed to heat stress (at 34 °C). The experimental groups were as follows: group I (positive control) and group II (control) were fed a basal diet, group III (vitamin C) was fed a basal diet supplemented with 250 mg vitamin C as ascorbic acid/kg, group IV (EEP-0.5) was fed a basal diet supplemented with 0.5 g EEP/kg, group V (EEP-1) was fed a basal diet supplemented with 1 g EEP/kg, group VI (EEP-3) was fed a basal diet supplemented with 3 g EEP/kg. Plasma superoxide dismutase levels of positive control, control, vitamin C, EEP-0.5, EEP-1 and EEP-3 groups were found as 0.34, 1.23, 0.50, 0.90, 0.30 and 0.41 μkat/ml, respectively (p < 0.01). Aspartate transaminase (except for EEP-0.5 and EEP-1 groups) and alkaline phosphatase in the control group were significantly higher than those of positive control, vitamin-C and EEP-3 groups. Malondialdehyde level in plasma, liver and muscle tissues of control group were found significantly (p < 0.05) higher than those of positive control and EEP-3 groups. Catalase activities of blood, liver, kidney and heart were the highest in the control group. Reduced glutathione activities of plasma and liver of all groups were not significantly different from each other, whereas those of muscle, kidney and heart were significantly higher in the control group. Significantly lower levels of glutathione peroxidase were found in blood, liver and kidney tissues of the control group (p < 0.05), whereas those of muscle and heart were similar in all groups. The results of the present study suggest that EEP and specially EEP at the supplemented dose of 3 mg/kg diet might be considered to prevent oxidative stress in the broilers exposed to heat stress.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Khalida Mokhtari ◽  
Eva E. Rufino-Palomares ◽  
Amalia Pérez-Jiménez ◽  
Fernando J. Reyes-Zurita ◽  
Celeny Figuera ◽  
...  

Maslinic acid (MA) is a natural compound whose structure corresponds to a pentacyclic triterpene. It is abundant in the cuticular lipid layer of olives. MA has many biological and therapeutic properties related to health, including antitumor, anti-inflammatory, antimicrobial, antiparasitic, antihypertensive, and antioxidant activities. However, no studies have been performed to understand the molecular mechanism induced by this compound in melanoma cancer. The objective of this study was to examine the effect of MA in melanoma (B16F10) cells grown in the presence or absence of fetal bovine serum (FBS). We performed cell proliferation measurements, and the reactive oxygen species (ROS) measurements using dihydrorhodamine 123 (DHR 123) and activities of catalase, glucose 6-phosphate dehydrogenase, glutathione S-transferase, and superoxide dismutase. These changes were corroborated by expression assays. FBS absence reduced cell viability decreasing IC50values of MA. The DHR 123 data showed an increase in the ROS level in the absence of FBS. Furthermore, MA had an antioxidant effect at lower assayed levels measured as DHR and antioxidant defense. However, at higher dosages MA induced cellular damage by apoptosis as seen in the results obtained.


1987 ◽  
Vol 63 (2) ◽  
pp. 597-602 ◽  
Author(s):  
C. L. Bryan ◽  
S. G. Jenkinson

Exposure of several different animal models to O2-induced lung injury has revealed marked differences in sensitivity of various species to O2 damage. These differences may be due in part to variation of cellular antioxidant defenses. To characterize lung antioxidant enzyme activities in different species, we measured lung activities of glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), catalase (CAT), and glutathione S-transferase (GSH S-trans) in rat, hamster, baboon, and human lung. Soluble lung fractions were also fractionated on Sephadex G-150-S columns and GSH-Px activity was measured using both cumene hydroperoxide and H2O2. This was done to evaluate non-Se-dependent GSH-Px activity in these lung samples. Human lung was obtained at surgery from patients undergoing lobectomy or pneumonectomy for localized lung tumors. SOD activity was similar for all four groups. GSH-Px activity was higher in rat lung than baboon or hamster lung. Lung CAT activity was variable with the highest activity present in the baboon which revealed a lung CAT activity 10 times higher than activity present in the rat. Lung GSH S-trans activities were higher in hamster, baboon, and human lung than in rat lung. Non-Se-dependent GSH-Px was present in rat lung but absent in hamster, baboon, and human lung. We conclude that the hamster was the best model of the animals studied for mimicking human lung antioxidant enzyme activities. Rat lung antioxidant enzyme activities were markedly different from any of the other species examined.


Sign in / Sign up

Export Citation Format

Share Document