Synthesis of Hierarchical MOR-Type Zeolites with Improved Catalytic Properties
Hierarchical MOR-type zeolites were synthesized in the presence of hexadecyltrimethylammonium bromide (CTAB) as a porogen agent. XRD proved that the concentration of CTAB in the synthesis medium plays an essential role in forming pure hierarchical MOR-type material. Above a CTAB concentration of 0.04 mol·L−1, amorphous materials are observed. These hierarchical mordenite possess a higher porous volume compared to its counterpart conventional micrometer crystals. Nitrogen sorption showed the presence of mesoporosity for all mordenite samples synthesized in the presence of CTAB. The creation of mesopores due to the presence of CTAB in the synthesis medium does not occur at the expense of zeolite micropores. In addition, mesoporous volume and BET surface seem to increase upon the increase of CTAB concentration in the synthesis medium. The Si/Al ratio of the zeolite framework can be increased from 5.5 to 9.1 by halving the aluminum content present in the synthesis gel. These synthesized hierarchical MOR-type zeolites possess an improved catalytic activity for n-hexane cracking compared to large zeolite crystals obtained in the absence of CTAB.