zeolite framework
Recently Published Documents


TOTAL DOCUMENTS

284
(FIVE YEARS 75)

H-INDEX

33
(FIVE YEARS 7)

Author(s):  
Izabel C. Medeiros-Costa ◽  
Eddy Dib ◽  
Florent Dubray ◽  
Simona Moldovan ◽  
Jean-Pierre Gilson ◽  
...  

Fuel ◽  
2022 ◽  
Vol 307 ◽  
pp. 121790
Author(s):  
Chengming Huang ◽  
Dingmei Han ◽  
Linjie Guan ◽  
Linhua Zhu ◽  
Yi Mei ◽  
...  

Catalysts ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1541
Author(s):  
Bhupendra Kumar Singh ◽  
Yongseok Kim ◽  
Seungdon Kwon ◽  
Kyungsu Na

Currently, zeolites are one of the most important classes of heterogeneous catalysts in chemical industries owing to their unique structural characteristics such as molecular-scale size/shape-selectivity, heterogenized single catalytic sites in the framework, and excellent stability in harsh industrial processes. However, the microporous structure of conventional zeolite materials limits their applications to small-molecule reactions. To alleviate this problem, mesoporous zeolitic frameworks were developed. In the last few decades, several methods have been developed for the synthesis of mesoporous zeolites; these zeolites have demonstrated greater lifetime and better performance than their bulk microporous counterparts in many catalytic processes, which can be explained by the rapid diffusion of reactant species into the zeolite framework and facile accessibility to bulky molecules through the mesopores. Mesoporous zeolites provide versatile opportunities not only in conventional chemical industries but also in emerging catalysis fields. This review presents many state-of-the-art mesoporous zeolites, discusses various strategies for their synthesis, and details their contributions to catalytic reactions including catalytic cracking, isomerization, alkylation and acylation, alternative fuel synthesis via methanol-to-hydrocarbon (MTH) and Fischer–Tropsch synthesis (FTS) routes, and different fine-chemical syntheses.


2021 ◽  
Vol 82 (3) ◽  
pp. 28-30
Author(s):  
Tsveta Stanimirova ◽  
Georgi Kirov

The existence of a specific gallery type of zeolite framework is confirmed. It has been found that similar to HEU-type, STI-type framework can be represented as a layered structure in which two impermeable to water molecules and exchange cations aluminum-silicate layers, separated by diortho-groups, confined gallery-type of porous free space, which is available for extra-framework components migration in all directions in the plane of the interlayer.


Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7296
Author(s):  
Petko St. Petkov ◽  
Kristina Simeonova ◽  
Iskra Z. Koleva ◽  
Hristiyan A. Aleksandrov ◽  
Yoshihiro Kubota ◽  
...  

We used computational modeling, based on Density Functional Theory, to help understand the preference for the formation of silanol nests and the substitution of Si by Ti or Al in different crystallographic positions of the MSE-type framework. All these processes were found to be energetically favorable by more than 100 kJ/mol. We suggested an approach for experimental identification of the T atom position in Ti-MCM-68 zeolite via simulation of infrared spectra of pyridine and acetonitrile adsorption at Ti. The modeling of adsorption of hydrogen peroxide at Ti center in the framework has shown that the molecular adsorption was preferred over the dissociative adsorption by 20 to 40 kJ/mol in the presence or absence of neighboring T-atom vacancy, respectively.


2021 ◽  
pp. 122725
Author(s):  
Joel Antúnez-García ◽  
D.H. Galván ◽  
Vitalii Petranovskii ◽  
Fabian N. Murrieta-Rico ◽  
Rosario I. Yocupicio-Gaxiola ◽  
...  

2021 ◽  
Vol 6 (1) ◽  
pp. 32-36
Author(s):  
Anh Quoc Le ◽  
Van Phu Dang ◽  
Ngoc Duy Nguyen ◽  
Kim Lan Nguyen Thi ◽  
Kim Lang Vo Thi ◽  
...  

Silver nanoparticles (AgNPs) doped in the zeolite framework (AgNPs/Z) were successfully synthesized by γ-irradiation in ethanol solution of silver ion-zeolite (Ag+/Z) prepared by ion exchange reaction between silver nitrate (AgNO3) and zeolite 4A. The effects of the Ag+ concentration and irradiation dose on the formation of AgNPs/Z were also investigated. AgNPs/Z with the silver content of about 10,000 ppm and the average particle size of AgNPs of about 27 nm was characterized by ultraviolet-visible spectroscopy, powder X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM). Firstly, AgNPs/Z was added into PP resins for creation of PP-AgNPs/Z masterbatch (Ag content of ~10.000 ppm) and then PP-AgNPs/Z plastics were preapared by mixing masterbatch with PP resins. The antibacterial activity of the PP-AgNPs/Z plastics was investigated against Gram-negative bacteria Escherichia coli (E. coli). The results showed that PP-AgNPs/Z plastic contained 100 ppm of Ag possessed a high antibacterial property, namely the bactericidal effect was more than 96 % on the platic surface. In conclusion, possessing many advantages such as: vigorously antibacterial effect and good dispersion in plastic matrix, AgNPs/Z is promising to be applied as bactericidal agent for plastic industry.


Sign in / Sign up

Export Citation Format

Share Document