scholarly journals Effect of Pore Size Distribution and Amination on Adsorption Capacities of Polymeric Adsorbents

Molecules ◽  
2021 ◽  
Vol 26 (17) ◽  
pp. 5267
Author(s):  
Wei Liu ◽  
Yuxi Zhang ◽  
Shui Wang ◽  
Lisen Bai ◽  
Yanhui Deng ◽  
...  

Polymeric adsorbents with different properties were synthesized via suspension polymerization. Equilibrium and kinetics experiments were then performed to verify the adsorption capacities of the resins for molecules of various sizes. The adsorption of small molecules reached equilibrium more quickly than the adsorption of large molecules. Furthermore, the resins with small pores are easy to lower their adsorption capacities for large molecules because of the pore blockage effect. After amination, the specific surface areas of the resins decreased. The average pore diameter decreased when the resin was modified with either primary or tertiary amines, but the pore diameter increased when the resin was modified with secondary amines. The phenol adsorption capacities of the amine-modified resins were reduced because of the decreased specific area. The amine-modified resins could more efficiently adsorb reactive brilliant blue 4 owing to the presence of polar functional groups.

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Zhilin Liu ◽  
Yang Teng ◽  
Kai Zhang

An array of new MCM-41 with substantially larger average pore diameters was synthesized through adding 1,3,5-trimethylbenzene (TMB) as the swelling agent to explore the effect of pore size on final adsorbent properties. The pore expanded MCM-41 was also grafted with (3-Aminopropyl)triethoxysilane (APTES) to determine the optimal pore size for CO2adsorption. The pore-expanded mesoporous MCM-41s showed relatively less structural regularity but significant increments of pore diameter (4.64 to 7.50 nm); the fraction of mesopore volume also illustrated an increase. The adsorption heat values were correlated with the order of the adsorption capacities for pore expanded MCM-41s. After amine functionalization, the adsorption capacities and heat values showed a significant increase. APTES-grafted pore-expanded MCM-41s depicted a high potential for CO2capture regardless of the major drawback of the high energy required for regeneration.


2014 ◽  
Vol 955-959 ◽  
pp. 116-119
Author(s):  
Yang Zhou ◽  
Bin Yan ◽  
Zeng Yin Zhu ◽  
Zhong Shen ◽  
Hai Suo Wu

Two weak acid resins (WT-1, WT-2) with different pore structures were prepared through suspension polymerization from methyl acrylate (MA) and divinylbenzene (DVB). Cu2+ was employed as the adsorbate and bath experiments were carried out to investigate the adsorption performance of the two resins. The addition of porogen (toluene) enlarged the exchange capacity, specific surface area and average pore diameter of resins, leading to the faster adsorption rate and higher maximum adsorption capacity. The adsorption capacity increased 3.5~28.5% with the rise of porogen/monomer ratio from 0 to 30%. This work shows the porogen influence on the adsorption kinetics and thermodynamics of weak acid resins.


2017 ◽  
Vol 68 (3) ◽  
pp. 483-486
Author(s):  
Constantin Sorin Ion ◽  
Mihaela Bombos ◽  
Gabriel Vasilievici ◽  
Dorin Bombos

Desulfurisation of atmospheric distillation gasoline and gas oil was performed by adsorption process on Fe/ bentonite. The adsorbent was characterized by determining the adsorption isotherms, specific surface area, pore volume and average pore diameter. Adsorption experiments of atmospheric distillation gasoline and gas oil were performed in continuous system at 280�320oC, 5 atm and volume hourly space velocities of 1�2 h-1. The efficiency of adsorption on Fe / bentonite was better at desulphurisation of gasoline versus gas oil.


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Denise S. Cordeiro ◽  
Fernando L. Cassio ◽  
Larissa Ciccotti ◽  
Thiago L. R. Hewer ◽  
Paola Corio ◽  
...  

AbstractPraseodymium doped TiO2 nanoparticles were successfully prepared by the sol–gel method and characterized by X-ray powder diffraction, N2 adsorption–desorption isotherm, and UV–vis spectroscopy. The effects of the dopant on the crystallite size, specific surface area, average pore diameter, pore volume, and bandgap energy were investigated. The photocatalytic activity of the catalysts was evaluated by bisphenol A degradation and mineralization, which is a representative endocrine disruptor. Furthermore, under visible light irradiation the Pr-modified TiO2 photocatalysts exhibited higher photocatalytic efficiency than unmodified TiO2. When praseodymium was loaded (1.0–5.0%) onto the surface of TiO2, the rates of degradation and mineralization were increased 3–5 times.


2012 ◽  
Vol 550-553 ◽  
pp. 158-163 ◽  
Author(s):  
Zi Yuan Liu ◽  
Sheng Li Chen ◽  
Peng Dong ◽  
Xiu Jun Ge

Through the measured effective diffusion coefficients of Dagang vacuum residue supercritical fluid extraction and fractionation (SFEF) fractions in FCC catalysts and SiO2model catalysts, the relation between pore size of catalyst and effective diffusion coefficient was researched and the restricted diffusion factor was calculated. The restricted diffusion factor in FCC catalysts is less than 1 and it is 1~2 times larger in catalyst with polystyrene (PS) template than in conventional FCC catalyst without template, indicating that the diffusion of SFEF fractions in the two FCC catalysts is restricted by the pore. When the average molecular diameter is less than 1.8 nm, the diffusion of SFEF fractions in SiO2model catalyst which average pore diameter larger than 5.6 nm is unrestricted. The diffusion is restricted in the catalyst pores of less than 8 nm for SFEF fractions which diameter more than 1.8 nm. The tortuosity factor of SiO2model catalyst is obtained to be 2.87, within the range of empirical value. The effective diffusion coefficient of the SFEF fractions in SiO2model catalyst is two orders of magnitude larger than that in FCC catalyst with the same average pore diameter. This indicate that besides the ratio of molecular diameter to the pore diameter λ, the effective diffusion coefficient is also closely related to the pore structure of catalyst. Because SiO2model catalyst has uniform pore size, the diffusion coefficient can be precisely correlated with pore size of catalyst, so it is a good model material for catalyst internal diffusion investigation.


2013 ◽  
Vol 833 ◽  
pp. 159-164 ◽  
Author(s):  
Xiu Qian Li ◽  
Hai Peng Qiu ◽  
Jian Jiao

The ZrC/SiC multi-components modified C/C composites were prepared by using a hybrid precursor containning polycarbosilane and organic zirconium-contained polymeric precursor as impregnant and C/C composites of low density as preform. The porosity, microstructure and mechanical properties of samples were characterized with mercury injection apparatus, scanning electron microscopy and universal electron testing machine respectively. The results show that the porosity and average pore diameter decrease firstly and increase subsequently with the increase of organic zirconium content of the precursor. When the content of organic zirconium is 50%, the porosity and average pore diameter reach minimum which were7.27% and 0.0795um respectively. The most probabilistic pore diameter shifted from 10-100um to 1-10um at the same time; Meanwhile, the flexural properties also increases and drops immediately as the content of organic zirconium in the precursor adds. When the content of organic zirconium is 25%, the flexural strength reaches maximum of 245.20MPa.The improved flexural properties is attributed to the proper bonding of fiber-matrix interface and the low porosity of samples.


2006 ◽  
Vol 951 ◽  
Author(s):  
Sorapong Pavasupree ◽  
Supachai Ngamsinlapasathian ◽  
Yoshikazu Suzuki ◽  
Susumu Yoshikawa

ABSTRACTNanorods/nanoparticles TiO2 with mesoporous structure were synthesized by hydrothermal method at 150 °C for 20 h. The samples characterized by XRD, SEM, TEM, SAED, HRTEM, and BET surface area. The nanorods had diameter about 10-20 nm and the lengths of 100-200 nm, the nanoparticles had diameter about 5-10 nm. The prepared material had average pore diameter about 7-12 nm. The BET surface area and pore volume of the sample are about 203 m2/g and 0.655 cm3/g, respectively. The nanorods/nanoparticles TiO2 with mesoporous structure showed higher photocatalytic activity (I3− concentration) than the nanorods TiO2, nanofibers TiO2, mesoporous TiO2, and commercial TiO2 (ST-01, P-25, JRC-01, and JRC-03). The solar energy conversion efficiency (η) of the cell using nanorods/nanoparticles TiO2 with mesoporous structure was about 7.12 % with Jsc of 13.97 mA/cm2, Voc of 0.73 V and ff of 0.70; while η of the cell using P-25 reached 5.82 % with Jsc of 12.74 mA/cm2, Voc of 0.704 V and ff of 0.649.


2021 ◽  
Vol 11 (9) ◽  
pp. 1534-1545
Author(s):  
Xuhui Wang ◽  
Jianchuan Sun ◽  
Shuaiqi Chen ◽  
Shuai Ren ◽  
Awang Gao ◽  
...  

A series of γ-alumina with different pore sizes (5.7 nm–21.6 nm) and similar specific surface areas were synthesized via an organic-free method and their adsorption rates and capacities for Congo red (CR), direct blue 78 (DB78) and direct green 26 (DG26) were investigated. The kinetics study reveals that the dye adsorptions of all γ-alumina samples fit the pseudo-2nd-order model. For CR, its k2 and the pore size of absorbent are in a linear relationship at low dye concentrations. Both of the experimental results and Langmuir isotherm calculation results suggest that the dye adsorption capacities of the γ-alumina prepared in our lab are much higher than those of other γ-alumina reported in literatures. GA-1 with the largest specific area of surface and largest size of pores exhibits a CR adsorption capacity up to 4213.6 mg/g. In addition, initial dye adsorption rates of the γ-alumina prepared in-house are much higher than that of the γ-alumina prepared with the commercially available alumina under the same conditions.


2016 ◽  
Vol 193 ◽  
pp. 51-64 ◽  
Author(s):  
Kaiyu Fu ◽  
Donghoon Han ◽  
Chaoxiong Ma ◽  
Paul W. Bohn

Electrochemical reactions at nanoscale structures possess unique characteristics, e.g. fast mass transport, high signal-to-noise ratio at low concentration, and insignificant ohmic losses even at low electrolyte concentrations. These properties motivate the fabrication of high density, laterally ordered arrays of nanopores, embedding vertically stacked metal–insulator–metal electrode structures and exhibiting precisely controlled pore size and interpore spacing for use in redox cycling. These nanoscale recessed ring-disk electrode (RRDE) arrays exhibit current amplification factors, AFRC, as large as 55-fold with Ru(NH3)62/3+, indicative of capture efficiencies at the top and bottom electrodes, Φt,b, exceeding 99%. Finite element simulations performed to investigate the concentration distribution of redox species and to assess operating characteristics are in excellent agreement with experiment. AFRC increases as the pore diameter, at constant pore spacing, increases in the range 200–500 nm and as the pore spacing, at constant pore diameter, decreases in the range 1000–460 nm. Optimized nanoscale RRDE arrays exhibit a linear current response with concentration ranging from 0.1 μM to 10 mM and a small capacitive current with scan rate up to 100 V s−1. At the lowest concentrations, the average pore occupancy is 〈n〉 ∼ 0.13 molecule establishing productive electrochemical signals at occupancies at and below the single molecule level in these nanoscale RRDE arrays.


Sign in / Sign up

Export Citation Format

Share Document