scholarly journals Chiral Aminoalcohols and Squaric Acid Amides as Ligands for Asymmetric Borane Reduction of Ketones: Insight to In Situ Formed Catalytic System by DOSY and Multinuclear NMR Experiments

Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 6865
Author(s):  
Yana Nikolova ◽  
Georgi M. Dobrikov ◽  
Zhanina Petkova ◽  
Pavletta Shestakova

A series of squaric acid amides (synthesized in 66–99% isolated yields) and a set of chiral aminoalcohols were comparatively studied as ligands in a model reaction of reduction of α-chloroacetophenone with BH3•SMe2. In all cases, the aminoalcohols demonstrated better efficiency (up to 94% ee), while only poor asymmetric induction was achieved with the corresponding squaramides. A mechanistic insight on the in situ formation and stability at room temperature of intermediates generated from ligands and borane as possible precursors of the oxazaborolidine-based catalytic system has been obtained by 1H DOSY and multinuclear 1D and 2D (1H, 10/11B, 13C, 15N) NMR spectroscopy of equimolar mixtures of borane and selected ligands. These results contribute to better understanding the complexity of the processes occurring in the reaction mixture prior to the possible oxazaborolidine formation, which play a crucial role on the degree of enantioselectivity achieved in the borane reduction of α-chloroacetophenone.

2017 ◽  
Vol 41 (11) ◽  
pp. 631-635
Author(s):  
Yuqin Jiang ◽  
Kai Wu ◽  
Xuxia Tan ◽  
Dandan Zhang ◽  
Wenpei Dong ◽  
...  

A fast and green protocol for the synthesis of 1,4-disubstituted 1,2,3-triazoles from azides and arylacetaldehydes at room temperature was developed using [bmim]PF6/KOH as the reaction medium. It was found that the in situ-generated carbene from [bmim]PF6/KOH acted as the catalyst. In the absence of a transition-metal catalyst and organic solvent, this azide–arylacetaldehyde [3 + 2] cycloaddition proceeds efficiently, with high levels of regioselectivity, broad range of substrates, excellent yields and simple operation under mild conditions.


2012 ◽  
Vol 2012 ◽  
pp. 1-6
Author(s):  
Parasa Hazarika ◽  
Pallab Pahari ◽  
Manash Jyoti Borah ◽  
Dilip Konwar

A novel catalytic system consisting of I2-SDS-H2O has been developed which cleaves 2,3-diaza-1,3-butadiene, 1-aza-1,3-butadienes, oximes and in presence of indoles in the medium uses the corresponding aldehyde products to produce bis(indolyl)alkanes in situ. This one pot simple and mild dual catalytic system works in water at room temperature under neutral conditions.


Molecules ◽  
2018 ◽  
Vol 23 (10) ◽  
pp. 2408 ◽  
Author(s):  
Yasuhiro Kawanami ◽  
Ryo Yanagita

Oxazaborolidine catalyst (CBS catalyst) has been extensively used for catalytic borane reduction with a predictable absolute stereochemistry and high enantioselectivity. However, the use of isolated CBS catalyst sometimes has the drawback of low reproducibility due to the aging of the CBS catalyst during storage. Therefore, we investigated a more reliable and practical method for the reduction of a variety of ketones including challenging substrates, primary aliphatic ketones, α,β-enones, and trifluoromethyl ketones. This review surveys the developments in borane reduction using oxazaborolidine catalysts generated in situ from chiral lactam alcohols and borane.


Author(s):  
César D. Fermin ◽  
Dale Martin

Otoconia of higher vertebrates are interesting biological crystals that display the diffraction patterns of perfect crystals (e.g., calcite for birds and mammal) when intact, but fail to produce a regular crystallographic pattern when fixed. Image processing of the fixed crystal matrix, which resembles the organic templates of teeth and bone, failed to clarify a paradox of biomineralization described by Mann. Recently, we suggested that inner ear otoconia crystals contain growth plates that run in different directions, and that the arrangement of the plates may contribute to the turning angles seen at the hexagonal faces of the crystals.Using image processing algorithms described earlier, and Fourier Transform function (2FFT) of BioScan Optimas®, we evaluated the patterns in the packing of the otoconia fibrils of newly hatched chicks (Gallus domesticus) inner ears. Animals were fixed in situ by perfusion of 1% phosphotungstic acid (PTA) at room temperature through the left ventricle, after intraperitoneal Nembutal (35mg/Kg) deep anesthesia. Negatives were made with a Hitachi H-7100 TEM at 50K-400K magnifications. The negatives were then placed on a light box, where images were filtered and transferred to a 35 mm camera as described.


Author(s):  
C. Jennermann ◽  
S. A. Kliewer ◽  
D. C. Morris

Peroxisome proliferator-activated receptor gamma (PPARg) is a member of the nuclear hormone receptor superfamily and has been shown in vitro to regulate genes involved in lipid metabolism and adipocyte differentiation. By Northern analysis, we and other researchers have shown that expression of this receptor predominates in adipose tissue in adult mice, and appears first in whole-embryo mRNA at 13.5 days postconception. In situ hybridization was used to find out in which developing tissues PPARg is specifically expressed.Digoxigenin-labeled riboprobes were generated using the Genius™ 4 RNA Labeling Kit from Boehringer Mannheim. Full length PPAR gamma, obtained by PCR from mouse liver cDNA, was inserted into pBluescript SK and used as template for the transcription reaction. Probes of average size 200 base pairs were made by partial alkaline hydrolysis of the full length transcripts. The in situ hybridization assays were performed as described previously with some modifications. Frozen sections (10 μm thick) of day 18 mouse embryos were cut, fixed with 4% paraformaldehyde and acetylated with 0.25% acetic anhydride in 1.0M triethanolamine buffer. The sections were incubated for 2 hours at room temperature in pre-hybridization buffer, and were then hybridized with a probe concentration of 200μg per ml at 70° C, overnight in a humidified chamber. Following stringent washes in SSC buffers, the immunological detection steps were performed at room temperature. The alkaline phosphatase labeled, anti-digoxigenin antibody and detection buffers were purchased from Boehringer Mannheim. The sections were treated with a blocking buffer for one hour and incubated with antibody solution at a 1:5000 dilution for 2 hours, both at room temperature. Colored precipitate was formed by exposure to the alkaline phosphatase substrate nitrobluetetrazoliumchloride/ bromo-chloroindlylphosphate.


2020 ◽  
Author(s):  
Keishiro Yamashita ◽  
Kazuki Komatsu ◽  
Hiroyuki Kagi

An crystal-growth technique for single crystal x-ray structure analysis of high-pressure forms of hydrogen-bonded crystals is proposed. We used alcohol mixture (methanol: ethanol = 4:1 in volumetric ratio), which is a widely used pressure transmitting medium, inhibiting the nucleation and growth of unwanted crystals. In this paper, two kinds of single crystals which have not been obtained using a conventional experimental technique were obtained using this technique: ice VI at 1.99 GPa and MgCl<sub>2</sub>·7H<sub>2</sub>O at 2.50 GPa at room temperature. Here we first report the crystal structure of MgCl2·7H2O. This technique simultaneously meets the requirement of hydrostaticity for high-pressure experiments and has feasibility for further in-situ measurements.


2020 ◽  
Vol 74 (11) ◽  
pp. 866-870
Author(s):  
Lewis C. H. Maddock ◽  
Alan Kennedy ◽  
Eva Hevia

While fluoroaryl fragments are ubiquitous in many pharmaceuticals, the deprotonation of fluoroarenes using organolithium bases constitutes an important challenge in polar organometallic chemistry. This has been widely attributed to the low stability of the in situ generated aryl lithium intermediates that even at –78 °C can undergo unwanted side reactions. Herein, pairing lithium amide LiHMDS (HMDS = N{SiMe3}2) with FeII(HMDS)2 enables the selective deprotonation at room temperature of pentafluorobenzene and 1,3,5-trifluorobenzene via the mixed-metal base [(dioxane)LiFe(HMDS)3] (1) (dioxane = 1,4-dioxane). Structural elucidation of the organometallic intermediates [(dioxane)Li(HMDS)2Fe(ArF)] (ArF = C6F5, 2; 1,3,5-F3-C6H2, 3) prior electrophilic interception demonstrates that these deprotonations are actually ferrations, with Fe occupying the position previously filled by a hydrogen atom. Notwithstanding, the presence of lithium is essential for the reactions to take place as Fe II (HMDS)2 on its own is completely inert towards the metallation of these substrates. Interestingly 2 and 3 are thermally stable and they do not undergo benzyne formation via LiF elimination.


Sign in / Sign up

Export Citation Format

Share Document