scholarly journals Nek2 Kinase Signaling in Malaria, Bone, Immune and Kidney Disorders to Metastatic Cancers and Drug Resistance: Progress on Nek2 Inhibitor Development

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 347
Author(s):  
Dibyendu Dana ◽  
Tuhin Das ◽  
Athena Choi ◽  
Ashif I. Bhuiyan ◽  
Tirtha K. Das ◽  
...  

Cell cycle kinases represent an important component of the cell machinery that controls signal transduction involved in cell proliferation, growth, and differentiation. Nek2 is a mitotic Ser/Thr kinase that localizes predominantly to centrosomes and kinetochores and orchestrates centrosome disjunction and faithful chromosomal segregation. Its activity is tightly regulated during the cell cycle with the help of other kinases and phosphatases and via proteasomal degradation. Increased levels of Nek2 kinase can promote centrosome amplification (CA), mitotic defects, chromosome instability (CIN), tumor growth, and cancer metastasis. While it remains a highly attractive target for the development of anti-cancer therapeutics, several new roles of the Nek2 enzyme have recently emerged: these include drug resistance, bone, ciliopathies, immune and kidney diseases, and parasitic diseases such as malaria. Therefore, Nek2 is at the interface of multiple cellular processes and can influence numerous cellular signaling networks. Herein, we provide a critical overview of Nek2 kinase biology and discuss the signaling roles it plays in both normal and diseased human physiology. While the majority of research efforts over the last two decades have focused on the roles of Nek2 kinase in tumor development and cancer metastasis, the signaling mechanisms involving the key players associated with several other notable human diseases are highlighted here. We summarize the efforts made so far to develop Nek2 inhibitory small molecules, illustrate their action modalities, and provide our opinion on the future of Nek2-targeted therapeutics. It is anticipated that the functional inhibition of Nek2 kinase will be a key strategy going forward in drug development, with applications across multiple human diseases.

Author(s):  
Chao-Hui Chang ◽  
Siim Pauklin

AbstractTransforming growth factor β (TGFβ) signalling pathway switches between anti-tumorigenic function at early stages of cancer formation and pro-tumorigenic effects at later stages promoting cancer metastasis. A similar contrasting role has been uncovered for reactive oxygen species (ROS) in pancreatic tumorigenesis. Down-regulation of ROS favours premalignant tumour development, while increasing ROS level in pancreatic ductal adenocarcinoma (PDAC) enhances metastasis. Given the functional resemblance, we propose that ROS-mediated processes converge with the spatial and temporal activation of TGFβ signalling and thereby differentially impact early tumour growth versus metastatic dissemination. TGFβ signalling and ROS could extensively orchestrate cellular processes and this concerted function can be utilized by cancer cells to facilitate their malignancy. In this article, we revisit the interplay of canonical and non-canonical TGFβ signalling with ROS throughout pancreatic tumorigenesis and metastasis. We also discuss recent insight that helps to understand their conflicting effects on different stages of tumour development. These considerations open new strategies in cancer therapeutics.


2021 ◽  
Vol 11 ◽  
Author(s):  
Dan Xie ◽  
Qin Pei ◽  
Jingyuan Li ◽  
Xue Wan ◽  
Ting Ye

The E2F family of transcription factors (E2Fs) consist of eight genes in mammals. These genes encode ten proteins that are usually classified as transcriptional activators or transcriptional repressors. E2Fs are important for many cellular processes, from their canonical role in cell cycle regulation to other roles in angiogenesis, the DNA damage response and apoptosis. A growing body of evidence demonstrates that cancer stem cells (CSCs) are key players in tumor development, metastasis, drug resistance and recurrence. This review focuses on the role of E2Fs in CSCs and notes that many signals can regulate the activities of E2Fs, which in turn can transcriptionally regulate many different targets to contribute to various biological characteristics of CSCs, such as proliferation, self-renewal, metastasis, and drug resistance. Therefore, E2Fs may be promising biomarkers and therapeutic targets associated with CSCs pathologies. Finally, exploring therapeutic strategies for E2Fs may result in disruption of CSCs, which may prevent tumor growth, metastasis, and drug resistance.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2978-2978
Author(s):  
Pilar De La Puente ◽  
Barbara Muz ◽  
Feda Azab ◽  
Micah John Luderer ◽  
Jack L. Arbiser ◽  
...  

Abstract Introduction: Despite recent progress in novel and targeted therapies, multiple myeloma (MM) remains a therapeutically challenging incurable disease. The regulation of important cellular processes and its link to cancer presented Src as an attractive target for MM. Src is a non-receptor protein tyrosine kinase which regulates multiple fundamental cellular processes including cell growth, migration, survival and differentiation. Activated Src in cancer lead to studies with Src as a target for anti-cancer drugs, and numerous Src inhibitors have become available to test the importance of Src in tumor initiation and progression. In MM, it has been described that in cell lines and MM patient-derived tumors, c-Src is constitutively activated, which plays an important role in drug resistance mechanisms. Tris dibenzylideneacetone dipalladium (Tris DBA), a small-molecule palladium complex, was shown to reduce Src/NMT-1 complex in melanoma cells, as well as inhibit downstream signaling including mitogen-activated protein kinase (MAPK kinase) and phosphoinositol-3-kinase (PI3K). We suggest a novel strategy to improve the treatment of MM and overcome the drug resistance for the current therapeutic agents by specific inhibition of Src in MM cells by an organopalladium compound, Tris DBA. Methods: Tris DBA was prepared by Dr. Arbiser. MM cell lines (MM.1S, MM.1R, H929, RPMI-8826, and OPM2) and PBMCs were cultured with Tris DBA (0-10 µM) for 24h. MM cells were analyzed for cell proliferation by MTT assay; cell cycle by DNA staining with PI and analyzed by flow cytometry; apoptosis was analyzed by Annexin V/PI staining and analyzed by flow cytometry; and cell signaling associated with proliferation, cell cycle, and apoptosis was analyzed by western blotting. In addition, cell proliferation assay of Tris DBA with or without combination of proteasome inhibitors (PIs) bortezomib or carfilzomib for 24h was analyzed on the proliferation of MM cells in normoxic or hypoxic conditions. Moreover, we tested the effect of combination treatment on cell cycle and apoptosis signaling under normoxic conditions. We then evaluated the effect of Tris DBA on HIF1α expression, migration and drug resistance under normoxic or hypoxic conditions. Results: The Src inhibitor Tris DBA reduced the proliferation of MM cell lines with an IC50 of about 1.5 - 3 µM after 24h treatment as a single agent, while none of the normal PBMC controls showed effect on their proliferation in the same dose range. These results were consistent with the decreased expression of proliferation signaling proteins from MAPK pathways (pERK), as well as PI3K (pS6R). Src inhibition led to the induction of a sub-G1 peak, which indicated accumulating apoptotic cells shown by DNA staining with PI. Apoptosis was then analyzed by Annexin/PI and confirmed by cleavage of caspase-3 and PARP. We found that Tris DBA synergized with bortezomib and carfilzomib by inhibiting proliferation of MM cells and reducing cell cycle protein signaling more than either of the drugs alone. Moreover, the Tris DBA/Bortezomib or Tris DBA/Carfilzomib combination therapies significantly increased apoptosis by caspase-3 cleavage more than treatment with either proteasome inhibitor individually. Tris DBA inhibited HIF1α expression in both normoxic and hypoxic conditions. HIF1α is an important target for hypoxia-driven drug resistance. Our studies confirmed hypoxia promoted faster chemotaxis of MM cells towards the chemo-attractants found in stromal cell conditioned media, and that Tris DBA treatment could overcome this hypoxia-induced effect. In addition, the development of hypoxia-induced drug resistance to individual bortezomib or carfilzomib treatment was overcome with combination treatment of Tris DBA under hypoxic conditions. Conclusions: Tris DBA reduces proliferation and induces G1 arrest and apoptosis in MM cells. Tris DBA synergized with PIs reducing proliferation and cell cycle signaling, as well as increasing apoptosis more than each drug alone. Tris DBA overcame hypoxia-induced effects such as enhanced chemotaxis or drug resistance to PIs by inhibition of HIF1α expression. Moreover, we found that Tris DBA is an effective anti-myeloma agent alone or in combination with other targeted drugs and that it reverses hypoxia-induced drug resistance in myeloma. These results suggest the use of Tris DBA as a new therapeutic agent in relapsed refractory myeloma. Disclosures Arbiser: ABBY Therapeutics: Other: Jack L Arbiser is listed as inventor on a US Patent for imipramine blue. He is cofounder of ABBY Therapeutics, which has licensed imipramine blue from Emory University.. Azab:Verastem: Research Funding; Targeted Therapeutics LLC: Other: Founder and owner ; Selexys: Research Funding; Karyopharm: Research Funding; Cell Works: Research Funding.


2019 ◽  
Vol 12 ◽  
pp. 251686571987076 ◽  
Author(s):  
Ankur Sharma

Cancer is a heterogeneous disease with key differences at the cellular and molecular levels. Acquisition of these differences during the course of tumor development manifests into functional and phenotypic heterogeneity leading to tumor diversity, also referred to as intra-tumor heterogeneity (ITH). Within a tumor, there are subpopulations of cells capable of tumor initiation and maintenance. These cells often exhibit resistance to standard-of-care anti-cancer drugs. However, the role of various subpopulations (clones) in drug resistance remains to be investigated. Moreover, the jury is still out about whether drug resistance is a result of clonal selection of preexisting cells, or the cells acquire resistance by dynamic re-wiring of their epigenome. Therefore, we investigated the drug-induced tumor evolution in patient-derived primary cells of head and neck squamous cell carcinoma. Our data demonstrated the role of a preexisting poised epigenetic state in drug-induced adaptive evolution of tumor cells. Importantly, the combination of chemotherapy and epigenetic inhibitors can prevent/delay drug-induced tumor evolution.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Simon J. Allison ◽  
Jaroslaw Bryk ◽  
Christopher J. Clemett ◽  
Robert A. Faulkner ◽  
Michael Ginger ◽  
...  

AbstractOne topical area of supramolecular chemistry is the binding of anionic species but despite the importance of anions in diverse cellular processes and for cancer development, anion receptors or ‘binders’ have received little attention as potential anti-cancer therapeutics. Here we report self-assembling trimetallic cryptands (e.g. [L2(Metal)3]6+ where Metal = Cu2+, Zn2+ or Mn2+) which can encapsulate a range of anions and which show metal-dependent differences in chemical and biological reactivities. In cell studies, both [L2Cu3]6+ and [L2Zn3]6+ complexes are highly toxic to a range of human cancer cell lines and they show significant metal-dependent selective activity towards cancer cells compared to healthy, non-cancerous cells (by up to 2000-fold). The addition of different anions to the complexes (e.g. PO43ˉ, SO42ˉ or PhOPO32ˉ) further alters activity and selectivity allowing the activity to be modulated via a self-assembly process. The activity is attributed to the ability to either bind or hydrolyse phosphate esters and mechanistic studies show differential and selective inhibition of multiple kinases by both [L2Cu3]6+ and [L2Zn3]6+ complexes but via different mechanisms.


Marine Drugs ◽  
2021 ◽  
Vol 19 (1) ◽  
pp. 31 ◽  
Author(s):  
Ana P. Rodrigo ◽  
Vera M. Mendes ◽  
Bruno Manadas ◽  
Ana R. Grosso ◽  
António P. Alves de Matos ◽  
...  

As Yondelis joins the ranks of approved anti-cancer drugs, the benefit from exploring the oceans’ biodiversity becomes clear. From marine toxins, relevant bioproducts can be obtained due to their potential to interfere with specific pathways. We explored the cytotoxicity of toxin-bearing secretions of the polychaete Eulalia onto a battery of normal and cancer human cell lines and discovered that the cocktail of proteins is more toxic towards an ovarian cancer cell line (A2780). The secretions’ main proteins were identified by proteomics and transcriptomics: 14-3-3 protein, Hsp70, Rab3, Arylsulfatase B and serine protease, the latter two being known toxins. This mixture of toxins induces cell-cycle arrest at G2/M phase after 3h exposure in A2780 cells and extrinsic programmed cell death. These findings indicate that partial re-activation of the G2/M checkpoint, which is inactivated in many cancer cells, can be partly reversed by the toxic mixture. Protein–protein interaction networks partake in two cytotoxic effects: cell-cycle arrest with a link to RAB3C and RAF1; and lytic activity of arylsulfatases. The discovery of both mechanisms indicates that venomous mixtures may affect proliferating cells in a specific manner, highlighting the cocktails’ potential in the fine-tuning of anti-cancer therapeutics targeting cell cycle and protein homeostasis.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Zahra Nozhat ◽  
Shabnam Heydarzadeh ◽  
Zahra Memariani ◽  
Amirhossein Ahmadi

Abstract Background Therapeutic resistance to radiation and chemotherapy is one of the major obstacles in cancer treatment. Although synthetic radiosensitizers are pragmatic solution to enhance tumor sensitivity, they pose concerns of toxicity and non-specificity. In the last decades, scientists scrutinized novel plant-derived radiosensitizers and chemosensitizers, such as flavones, owing to their substantial physiological effects like low toxicity and non-mutagenic properties on the human cells. The combination therapy with apigenin is potential candidate in cancer therapeutics. This review explicates the combinatorial strategies involving apigenin to overcome drug resistance and boost the anti-cancer properties. Methods We selected full-text English papers on international databases like PubMed, Web of Science, Google Scholar, Scopus, and ScienceDirect from 1972 up to 2020. The keywords included in the search were: Apigenin, Chemoprotective, Chemosensitizing, Side Effects, and Molecular Mechanisms. Results In this review, we focused on combination therapy, particularly with apigenin augmenting the anti-cancer effects of chemo drugs on tumor cells, reduce their side effects, subdue drug resistance, and protect healthy cells. The reviewed research data implies that these co-therapies exhibited a synergistic effect on various cancer cells, where apigenin sensitized the chemo drug through different pathways including a significant reduction in overexpressed genes, AKT phosphorylation, NFκB, inhibition of Nrf2, overexpression of caspases, up-regulation of p53 and MAPK, compared to the monotherapies. Meanwhile, contrary to the chemo drugs alone, combined treatments significantly induced apoptosis in the treated cells. Conclusion Briefly, our analysis proposed that the combination therapies with apigenin could suppress the unwanted toxicity of chemotherapeutic agents. It is believed that these expedient results may pave the path for the development of drugs with a high therapeutic index. Nevertheless, human clinical trials are a prerequisite to consider the potential use of apigenin in the prevention and treatment of various cancers. Conclusively, the clinical trials to comprehend the role of apigenin as a chemoprotective agent are still in infancy. Graphical Abstract


2021 ◽  
Author(s):  
Yu-Jin Kim ◽  
Haydar Witwit ◽  
Beatrice Cubitt ◽  
Juan C. de la Torre

Targeting host factors is a promising strategy to develop broad-spectrum antiviral drugs. Drugs targeting anti-apoptotic Bcl-2 family proteins that were originally developed as tumor suppressors have been reported to inhibit multiplication of different types of viruses. However, the mechanisms whereby Bcl-2 inhibitors exert their antiviral activity remain poorly understood. In this study, we have investigated the mechanisms by which obatoclax (OLX) and ABT-737 Bcl-2 inhibitors exhibited a potent antiviral activity against the mammarenavirus lymphocytic choriomeningitis virus (LCMV). OLX and ABT-737 potent anti-LCMV activity was not associated with their pro-apoptotic properties, but rather their ability of inducing cell arrest at G0/G1 phase. OLX and ABT-737 mediated inhibition of Bcl-2 correlated with reduced expression levels of thymidine kinase 1 (TK1), cyclin A2 (CCNA2), and cyclin B1 (CCNB1) cell cycle regulators. In addition, siRNA-mediated knock down of TK1, CCNA2, and CCNB1 resulted in reduced levels of LCMV multiplication. The antiviral activity exerted by Bcl-2 inhibitors correlated with reduced levels of viral RNA synthesis at early times of infection. Importantly, ABT-737 exhibited moderate efficacy in a mouse model of LCMV infection, and Bcl-2 inhibitors displayed broad-spectrum antiviral activities against different mammarenaviruses and SARS-CoV-2. Our results suggest that Bcl-2 inhibitors, actively being explored as anti-cancer therapeutics, might be repositioned as broad-spectrum antivirals. IMPORTANCE Anti-apoptotic Bcl-2 inhibitors have been shown to exert potent antiviral activities against various types of viruses via mechanisms that are currently poorly understood. This study has revealed that Bcl-2 inhibitors mediated cell cycle arrest at the G0/G1 phase, rather than their pro-apoptotic activity, plays a critical role in blocking mammarenavirus multiplication in cultured cells. In addition, we show that Bcl-2 inhibitor ABT-737 exhibited moderate anti-mammarenavirus activity in vivo , and that Bcl-2 inhibitors displayed broad-spectrum antiviral activities against different mammarenaviruses and SARS-CoV-2. Our results suggest that Bcl-2 inhibitors, actively being explored as anti-cancer therapeutics, might be repositioned as broad-spectrum antivirals.


Marine Drugs ◽  
2019 ◽  
Vol 17 (1) ◽  
pp. 54 ◽  
Author(s):  
Monika Corban ◽  
Mark Ambrose ◽  
Joanne Pagnon ◽  
Damien Stringer ◽  
Sam Karpiniec ◽  
...  

Fucoidan, the sulfated fucose-rich polysaccharide derived from brown macroalgae, was reported to display some anti-cancer effects in in vitro and in vivo models that included apoptosis and cell cycle arrest. The proposed mechanisms of action involve enhanced immune surveillance and direct pro-apoptotic effects via the activation of cell signaling pathways that remain largely uncharacterized. This study aimed to identify cellular pathways influenced by fucoidan using an unbiased genetic approach to generate additional insights into the anti-cancer effects of fucoidan. Drug–gene interactions of Undaria pinnatifida fucoidan were assessed by a systematic screen of the entire set of 4,733 halpoid Saccharomyces cerevsiae gene deletion strains. Some of the findings were confirmed using cell cycle analysis and DNA damage detection in non-immortalized human dermal fibroblasts and colon cancer cells. The yeast deletion library screen and subsequent pathway and interactome analysis identified global effects of fucoidan on a wide range of eukaryotic cellular processes, including RNA metabolism, protein synthesis, sorting, targeting and transport, carbohydrate metabolism, mitochondrial maintenance, cell cycle regulation, and DNA damage repair-related pathways. Fucoidan also reduced clonogenic survival, induced DNA damage and G1-arrest in colon cancer cells, while these effects were not observed in non-immortalized human fibroblasts. Our results demonstrate global effects of fucoidan in diverse cellular processes in eukaryotic cells and further our understanding about the inhibitory effect of Undaria pinnatifida fucoidan on the growth of human cancer cells.


Genetika ◽  
2014 ◽  
Vol 46 (1) ◽  
pp. 315-330
Author(s):  
Bosiljka Plecas-Solarovic ◽  
Ninoslav Djelic ◽  
Vladan Bajic ◽  
Lada Zivkovic ◽  
Biljana Spremo-Potparevic

Alzheimer?s disease (AD) is the most frequent progressive neurodegenerative disorder in elderly associated with irreversible cognitive impairment and dementia. The vast majority of AD patients are sporadic (SAD) in which the disease develops after age of 65. Despite of century of research, we lack understanding of the SAD etiology and pathogenesis. Several hypotheses try to explain the main causes of brain degeneration in SAD, one of them assuming that genomic instability and the reentry of certain neurons into the incomplete cell cycle may be the pathogenic basis of the disease. Although the brain is the most affected organ in AD, numerous studies showed structural and functional alterations in peripheral tissues, suggesting that AD is a generalized systemic disorder. Diverse changes in peripheral cells from AD patients are described in literature including cell cycle aberration and chromosome instability, alterations in cell viability, proliferation and apoptosis, oxidative metabolism, amyloid precursor protein and amyloid ? protein metabolism, and other cellular processes. The aim of this paper was to summarize and review the results of our investigations and the growing literature data concerning the multiple chromosomal alterations in peripheral cells of AD patients and to consider their possible role in the disease pathogenesis as well as the importance of such investigations.


Sign in / Sign up

Export Citation Format

Share Document