scholarly journals Data Shepherding in Nanotechnology. The Exposure Field Campaign Template

Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1818
Author(s):  
Irini Furxhi ◽  
Antti Joonas Koivisto ◽  
Finbarr Murphy ◽  
Sara Trabucco ◽  
Benedetta Del Secco ◽  
...  

In this paper, we demonstrate the realization process of a pragmatic approach on developing a template for capturing field monitoring data in nanomanufacturing processes. The template serves the fundamental principles which make data scientifically Findable, Accessible, Interoperable and Reusable (FAIR principles), as well as encouraging individuals to reuse it. In our case, the data shepherds’ (the guider of data) template creation workflow consists of the following steps: (1) Identify relevant stakeholders, (2) Distribute questionnaires to capture a general description of the data to be generated, (3) Understand the needs and requirements of each stakeholder, (4) Interactive simple communication with the stakeholders for variables/descriptors selection, and (5) Design of the template and annotation of descriptors. We provide an annotated template for capturing exposure field campaign monitoring data, and increase their interoperability, while comparing it with existing templates. This paper enables the data creators of exposure field campaign data to store data in a FAIR way and helps the scientific community, such as data shepherds, by avoiding extensive steps for template creation and by utilizing the pragmatic structure and/or the template proposed herein, in the case of a nanotechnology project (Anticipating Safety Issues at the Design of Nano Product Development, ASINA).

Author(s):  
Vance D. Browne

Abstract The process by which new products are brought to market — the product realization process, or PRP — can be introduced in engineering design education. In industry, the PRP has been evolving to concurrent engineering and product teams. The PRP includes components such as concept generation, analysis, manufacturing process development and customer interaction. Also, it involves the sequencing of the components and their connections which includes teamwork, project planning, meetings, reports and presentations. A capstone senior engineering project, along with classroom lectures and presentations can be structured to provide knowledge and experience to the students in many of the PRP components and the connections. This paper will give an overview of the PRP and a project/lecture structure at the author’s university. The instructor recently joined the academic ranks after years in industry with responsibility for directing product development and R&D and for leading product development teams.


2011 ◽  
pp. 2054-2072
Author(s):  
Jeongeun Kim

This chapter presents the overview of the current status and developmental stages of the PSIS technology and consensus around the patient safety issues as they emerge, grow, and mature globally. The first section gives the general description of the patient safety reporting system (PSRS), and then provides the brief summary of 23 patient safety information classifications and terminologies to date. In the next section, the development of the international classification of patient safety (ICPS) is overviewed, which evolved from the local to an international level by the joint initiatives of WHO. The essential elements of the PSIS and the clinical decision support system (CDSS) functionalities are explained to make the future goals of PSIS clearer. The patient safety indicator (PSI) is explained in a separate section, which provides the opportunity to assess the incidence of adverse events and in-hospital complications using administrative data found in the typical discharge record. The ultimate goals of PSIS and PSI are to improve the quality of healthcare and ensure patient safety.


Author(s):  
Siva Chaitanya Chaduvula ◽  
Adam Dachowicz ◽  
Mikhail J. Atallah ◽  
Jitesh H. Panchal

Developments in digital technology and manufacturing processes have expanded the horizon of designer innovation in creating products. In addition to this, real-time collaborative platforms help designers shorten the product development cycle by enabling collaborations with domain experts from concept generation to product realization and after-market. These collaborations are extending beyond enterprise and national boundaries, contributing to a growing concern among designers regarding the security of their sensitive information such as intellectual property (IP) and trade secrets. The source of such sensitive information leaks could be external (e.g., hacker) or internal (e.g., disgruntled employee) to the collaboration. From a designer's perspective, this fear can inhibit participation in a collaboration even though it might result in better products or services. In this paper, we aim to contextualize this evolving security space by discussing various security practices in digital domains, such as encryption and secret sharing, as well as manufacturing domains, such as physically unclonable function (PUF) and physical part watermarking for anticounterfeiting and tamper evidence purposes. Further, we classify these practices with respect to their performance against different adversarial models for different stages in product development. Such a classification can help designers to make informed decisions regarding security practices during the product realization process.


Author(s):  
Mohamed E. M. El-Sayed

The term Product realization is usually used to describe the physical realization of a product in the product development cycle. Therefore, the term may or may not include conceptualization and design phases. Considering that product realization means bringing a product to reality, it is important to study the concept of reality to understand the role of conceptualization, design, and manufacturing in product realization. In this paper, the concept of reality is expanded to include the perceptual and virtual realities as integral parts of the product realization process. This paper discusses the three phases of realization and their interactions. It also addresses the key roles of conceptualization, design and manufacturability in the realization process. To illustrate the concepts, presented in the paper, some examples are included.


Author(s):  
Mohamed E. M. El-Sayed ◽  
Jacqueline A. J. El-Sayed

Product realization, which is the goal of any product development process from concept to production, usually means bringing a product to physical reality. Problem solving and design are two of the engineering activities for achieving the product development process goal. For this reason engineering education efforts are usually focused on problem solving as a building block for any educational course or program activities. In addition, some courses and curriculum threads are usually dedicated to design education and practices. The common restriction of realization to mean physical reality, however, limits the full understanding and potential of better problem solving and design education in engineering. In this paper, the realization process is expanded to include the virtual and perceptual realities as valid domains of the product realization process. These domains of realization and their interactions with the physical reality are studied. Also, the relationships between research, problem solving, and design are examined in the context of engineering product realization. Focus, in this study, is directed to the understanding of research, engineering problem solving, and design activities as a result of the expanded realization concept. This understanding aims at improving engineering education by focusing on the key issue of creativity in program and course design, delivery, and assessment. To illustrate the concepts, presented in the paper, several examples are included.


Coatings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1486
Author(s):  
Irini Furxhi ◽  
Alessio Varesano ◽  
Hesham Salman ◽  
Mahsa Mirzaei ◽  
Vittoria Battistello ◽  
...  

In this paper, we exhibit how to construct a template for capturing antimicrobial capacity data of nanomaterials or nanoenabled products. The template promotes the principles of making data scientifically findable, accessible, interoperable and reusable (FAIR), encouraging scientists to reuse it. The template construction roadmap entails the following steps: (1) recognize appropriate stakeholders, (2) allocate surveys to collect a general explanation of the data that will be created, (3) comprehend each stakeholder’s requirements, (4) cooperating and using straightforward communication with the participants for the selection of the minimum data requirement reporting and (5) template layout and ontological annotation. We provide an annotated template for capturing antimicrobial data, increasing their interoperability while populating it with real measurements as an example. By applying the roadmap or by utilizing the template portrayed herein, in the case of a safe-by-design nanoproject (Anticipating Safety Issues at the Design of Nano Product Development (ASINA)), data creators of antimicrobial assessments can store the data using the FAIR approach. Furthermore, data shepherds and scientists can skip the lengthy template generation process and speed up the community’s progress on the FAIR route.


Author(s):  
Mitchell M. Tseng ◽  
Jianxin Jiao

Abstract Mass customization is becoming an important agenda in industry and academia alike. This paper deals with mass customization from a product development perspective. A framework of design for mass customization (DFMC) by developing product family architecture (PFA) is presented. To deal with tradeoffs between diversity of customer requirements and reusability of design and process capabilities, DFMC advocates shifting product development from designing individual products to designing product families. As the core of DFMC, the concept of PFA is developed to assist different functional departments within a manufacturing enterprise to work together cohesively. A PFA describes variety and product families and performs as a generic product platform for product differentiation in which individual customer requirements can be satisfied through systematic decisions of developing product variants. Based on such a PFA, the DFMC framework provides a unifying integration platform for synchronizing market positioning, soliciting customer requirements, increasing reusability, and enhancing manufacturing scale of economy across the entire product realization process.


2010 ◽  
Vol 26-28 ◽  
pp. 1115-1118
Author(s):  
Zhi Jun Rong ◽  
Bao Sheng Ying ◽  
Bin Bin Dan

The recent advance in information technologies has the potential to greatly enhance product development, and to make distributed designers, engineers, manufacturers and customers work together over networks. This paper reviews related work on service-oriented architecture, distributed infrastructure and highlights the need to integrate service-oriented architecture technologies for meaningful and interactive collaborative design processes. This paper presents a service-oriented architecture implemented by web services for collaborative design. The collaborative workspace is presented to facilitate the design participants’ collaboration. The proposed architecture is applicable to different requirements of design participants and enhances design interaction during the product realization process.


ISRN Allergy ◽  
2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
Giuliano Molinari ◽  
Giselda Colombo ◽  
Cinzia Celenza

The spread of respiratory allergies is increasing in parallel with the alarm of the scientific community. Evidently, our knowledge of the onset mechanisms of these diseases and, as a consequence, of the available remedies is inadequate. This review provides a brief, general description of current therapeutic resources and the state of research with regard to both drugs and medical devices in order to highlight their limits and the urgent need for progress. Increasing the amount of basic biochemical research will improve our knowledge of such onset mechanisms and the potential efficacy of therapeutic preparations.


Sign in / Sign up

Export Citation Format

Share Document