scholarly journals Miktoarm Star Copolymers Prepared by Transformation from Enhanced Spin Capturing Polymerization to Nitroxide-Mediated Polymerization (ESCP-Ŧ-NMP) toward Nanomaterials

Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2392
Author(s):  
Tzu-Yao Lin ◽  
Cheng-Wei Tu ◽  
Junko Aimi ◽  
Yu-Wen Huang ◽  
Tongsai Jamnongkan ◽  
...  

Reversible-deactivation radical polymerization (RDRP) serves as a powerful tool nowadays for the preparations of unique linear and non-linear macromolecules. In this study, enhanced spin capturing polymerizations (ESCPs) of styrene (St) and tert-butyl acrylate (tBA) monomers were, respectively, conducted in the presence of difunctional (1Z,1′Z)-1,1′-(1,4-phenylene) bis (N-tert-butylmethanimine oxide) (PBBN) nitrone. Four-arm (PSt)4 and (PtBA)4 star macroinitiators (MIs) can be afforded. By correspondingly switching the second monomer (i.e., tBA and St), miktoarm star copolymers (μ-stars) of (PSt)2-μ-(PtBA-b-PSt)2 and (PtBA)2-μ-(PSt-b-PtBA)2) were thus obtained. We further conducted hydrolysis of the PtBA segments to PAA (i.e., poly(acrylic acid)) in μ-stars to afford amphiphilic μ-stars of (PSt)2-μ-(PAA-b-PSt)2 and (PAA)2-μ-(PSt-b-PAA)2. We investigated each polymerization step and characterized the obtained two sets of “sequence-isomeric” μ-stars by FT-IR, 1H NMR, differential scanning calorimeter (DSC), and thermogravimetric analysis (TGA). Interestingly, we identified their physical property differences in the case of amphiphilic μ-stars by water contact angle (WCA) and atomic force microscopy (AFM) measurements. We thus proposed two microstructures caused by the difference of polymer chain sequences. Through this polymerization transformation (Ŧ) approach (i.e., ESCP-Ŧ-NMP), we demonstrated an interesting and facile strategy for the preparations of μ-stars with adjustable/switchable interior and exterior polymer structures toward the preparations of various nanomaterials.

Polymers ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 858 ◽  
Author(s):  
Venkatesan Sathesh ◽  
Jem-Kun Chen ◽  
Chi-Jung Chang ◽  
Junko Aimi ◽  
Zong-Cheng Chen ◽  
...  

The synthesis of novel branched/star copolymers which possess unique physical properties is highly desirable. Herein, a novel strategy was demonstrated to synthesize poly(ε-caprolactone) (PCL) based miktoarm star (μ-star) copolymers by combining ring-opening polymerization (ROP), styrenics-assisted atom transfer radical coupling (SA ATRC), and atom transfer radical polymerization (ATRP). From the analyses of gel permeation chromatography (GPC), proton nuclear magnetic resonance (1H NMR), and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), well-defined PCL-μ-PSt (PSt: polystyrene), and PCL-μ-PtBA (PtBA: poly(tert-butyl acrylate) μ-star copolymers were successfully obtained. By using atomic force microscopy (AFM), interestingly, our preliminary examinations of the μ-star copolymers showed a spherical structure with diameters of ca. 250 and 45 nm, respectively. We successfully employed combinations of synthetic techniques including ROP, SA ATRC, and ATRP with high effectiveness to synthesize PCL-based μ-star copolymers.


Author(s):  
CE Bracker ◽  
P. K. Hansma

A new family of scanning probe microscopes has emerged that is opening new horizons for investigating the fine structure of matter. The earliest and best known of these instruments is the scanning tunneling microscope (STM). First published in 1982, the STM earned the 1986 Nobel Prize in Physics for two of its inventors, G. Binnig and H. Rohrer. They shared the prize with E. Ruska for his work that had led to the development of the transmission electron microscope half a century earlier. It seems appropriate that the award embodied this particular blend of the old and the new because it demonstrated to the world a long overdue respect for the enormous contributions electron microscopy has made to the understanding of matter, and at the same time it signalled the dawn of a new age in microscopy. What we are seeing is a revolution in microscopy and a redefinition of the concept of a microscope.Several kinds of scanning probe microscopes now exist, and the number is increasing. What they share in common is a small probe that is scanned over the surface of a specimen and measures a physical property on a very small scale, at or near the surface. Scanning probes can measure temperature, magnetic fields, tunneling currents, voltage, force, and ion currents, among others.


2021 ◽  
Vol 10 (1) ◽  
pp. 37-48
Author(s):  
Sijia Li ◽  
Chun Shao ◽  
Zhikun Miao ◽  
Panfang Lu

Abstract Waste biomass can be used as a raw material for food packaging. Different concentrations of gelatin (GEL) were introduced into the leftover rice (LR) system to form an interpenetrating polymer network (IPN) for improving the properties of the films. The structure and morphology of films were evaluated by Fourier transform infrared, scanning electron microscopy, and atomic force microscopy, which showed good compatibility between LR and GEL. The moisture content and oil absorption rate of IPN films were down by 105% and 182%, respectively, which showed better water and oil resistance than the LR film. In addition, increasing GEL concentration led to enhancement in the tensile strength of films from 2.42 to 11.40 MPa. The water contact angle value of the IPN films (117.53°) increased by 147% than the LR film (47.56°). The low haze of IPN films was obtained with the increment of the mutual entanglement of LR and GEL. The 30–50% GEL addition improved the water vapor barrier and thermal stability properties of the IPN films. This study highlights that LR as waste biomass can have a practical application in food packaging.


Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 878
Author(s):  
Krystyna Wnuczek ◽  
Andrzej Puszka ◽  
Łukasz Klapiszewski ◽  
Beata Podkościelna

This study presents the preparation and the thermo-mechanical characteristics of polymeric blends based on di(meth)acrylates monomers. Bisphenol A glycerolate diacrylate (BPA.GDA) or ethylene glycol dimethacrylate (EGDMA) were used as crosslinking monomers. Methyl methacrylate (MMA) was used as an active solvent in both copolymerization approaches. Commercial polycarbonate (PC) was used as a modifying soluble additive. The preparation of blends and method of polymerization by using UV initiator (Irqacure® 651) was proposed. Two parallel sets of MMA-based materials were obtained. The first included more harmless linear hydrocarbons (EGDMA + MMA), whereas the second included the usually used aromatic copolymers (BPA.GDA + MMA). The influence of different amounts of PC on the physicochemical properties was discussed in detail. Chemical structures of the copolymers were confirmed by attenuated total reflection–Fourier transform infrared (ATR/FT-IR) spectroscopy. Thermo-mechanical properties of the synthesized materials were investigated by means of differential scanning calorimetry (DSC), thermogravimetric (TG/DTG) analyses, and dynamic mechanical analysis (DMA). The hardness of the obtained materials was also tested. In order to evaluate the surface of the materials, their images were obtained with the use of atomic force microscopy (AFM).


2013 ◽  
Vol 464 ◽  
pp. 9-13 ◽  
Author(s):  
Zan Li ◽  
Xia Wang ◽  
Ying Li ◽  
Wei Chain ◽  
Jiao Jiao Hu

Fluorinated polyurethanes (FPU) was prepared using fluorinated polyether polyol (FPO) as the soft segment, 4,4`-diphenylmethane diisocyanate (MDI) as the hard segment, 1,4-butanodiol (BDO) as the chain extender and catalysts. Tin metal catalysts were used to catalyze the polyurethane reaction of polyether polyols and isocyanate. The effect of different catalysts including stannous octoate (T-9) and dibutyltindalautrate (DBTDL) on the structure, surface properties and thermal properties of FPU was studied. The structural elucidation of the synthesized FPU was performed by Fourier transform infrared (FT-IR) and discovered that with decreasing catalyst efficiency or without catalyst, the strength of hydrogen bounds were enhanced. The FPU films surface was characterized by contact angle (CA) and atomic force microscopy (AFM) and it was found that the phase separation was increasing with increasing catalyst efficiency. The thermal property was exhibited by Thermo gravimetric (TG) and showed that joining catalyst improved stability significantly.


2017 ◽  
Vol 95 (5) ◽  
pp. 605-611 ◽  
Author(s):  
Lei Wang ◽  
Shaoqing Wen ◽  
Zhanxiong Li

A series of novel amphiphilic ABA-type poly(tridecafluorooctylacrylate)-poly(ethylene glycol)-poly(tridecafluorooctylacrylate) (henceforth referred to as p-TDFA-PEG-p-TDFA) triblock oligomers were successfully synthesized via atom transfer radical polymerization (ATRP) using well-defined Br-PEG-Br as macroinitiator and copper as catalyst. The block oligomers were characterized by Fourier transform infrared (FTIR) spectroscopy and 1H and 19F nuclear magnetic resonances (NMR). Gel permeation chromatography (GPC) showed that the block oligomers have been obtained with narrow molecular weight distributions of 1.22–1.33. X-ray photoelectron spectroscopy (XPS) was carried out to confirm the attachment of p-TDFA-PEG-p-TDFA onto the silicon substrate, together with the chemical compositions of p-TDFA-PEG-p-TDFA. The wetabilities of the oligomer films were measured by water contact angles (CAs). Water CAs of p-TDFA-PEG-p-TDFA film were measured and their morphologies were tested by atomic force microscopy (AFM). The result showed that the CAs of the oligomer films, which possess fluoroalkyl groups assembled on the outer surface, increase after heating due to the migration of fluoroalkyl groups and the resulted microphase separation of the p-TDFA-PEG-p-TDFA.


2018 ◽  
Vol 15 (1) ◽  
pp. 73-80 ◽  
Author(s):  
Baghdad Science Journal

Polyaniline membranes of aniline were produced using an electrochemical method in a cell consisting of two poles. The effect of the vaccination was observed on the color of membranes of polyaniline, where analysis as of blue to olive green paints. The sanction of PANI was done by FT-IR and Raman techniques. The crystallinity of the models was studied by X-ray diffraction technique. The different electronic transitions of the PANI were determined by UV-VIS spectroscopy. The electrical conductivity of the manufactured samples was measured by using the four-probe technique at room temperature. Morphological studies have been determined by Atomic force microscopy (AFM). The structural studies have been measured by (SEM).


Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2008
Author(s):  
Hsiu-Wen Chien ◽  
Hong-Yu Lin ◽  
Chau-Yi Tsai ◽  
Tai-Yu Chen ◽  
Wei-Nian Chen

Superhydrophilic coatings have been widely used for the surface modification of membranes or biomedical devices owing to their excellent antifouling properties. However, simplifying the modification processes of such materials remains challenging. In this study, we developed a simple and rapid one-step co-deposition process using an oxidant trigger to fabricate superhydrophilic surfaces based on dopamine chemistry with sulfobetaine methacrylate (SBMA). We studied the effect of different oxidants and SBMA concentrations on surface modification in detail using UV–VIS spectrophotometry, dynamic light scattering, atomic force microscopy, X-ray photoelectron spectroscopy, and surface plasmon resonance. We found that NaIO4 could trigger the rate of polymerization and the optimum ratio of dopamine to SBMA is 1:25 by weight. This makes the surface superhydrophilic (water contact angle < 10°) and antifouling. The superhydrophilic coating, when introduced to polyester membranes, showed great potential for oil/water separation. Our study provides a complete description of the simple and fast preparation of superhydrophilic coatings for surface modification based on mussel-inspired chemistry.


2013 ◽  
Vol 27 (11) ◽  
pp. 1350073
Author(s):  
M. P. BINITHA ◽  
P. P. PRADYUMNAN

Single crystals of copper succinate dihydrate (CSD) with triclinic structure were grown in silica gel medium. The functional groups in the crystal were analyzed by FT-IR Spectroscopy. Atomic Force Microscopy (AFM) revealed the striations on the surface of grown crystals, which were incorporated during its time of growth. Thermal degradation studies have been carried out by Differential Scanning Calorimetry (DSC). Dielectric constant and AC conductivity have been estimated as a function of frequency at different temperatures.


Sign in / Sign up

Export Citation Format

Share Document