A new method of solvent-free acrylic pressure-sensitive adhesives (PSAs) based on UV-induced cotelomerization products was presented. The key acrylic monomers (i.e., n-butyl acrylate and acrylic acid) with copolymerizable photoinitiator 4-acrylooxybenzophenone in the presence of a selected chain transfer agent (tetrabromomethane, TBM) were used in the UV-cotelomerization process. Moreover, two kinds of UV-photoinitiators (α-hydroxyalkylphenones, HPs and acylphosphine oxides, APOs) were tested. Photo-DSC, viscosity, thermogravimetric, and GPC measurements for cotelomers were performed. The kinetics study revealed that the systems with APOs, especially Omnirad 819 and Omnirad TPO, were characterized by a much higher reaction rate and greater initiation efficiency than HPs systems were. Additionally, the APO-based syrups exhibited a higher solid content (ca. 60–96 wt%), a higher dynamic viscosity (5–185 Pa·s), but slightly lower molecular weights (Mn and Mw) compared to HP syrups. However, better self-adhesive features (i.e., adhesion and tack) were observed for PSAs based on cotelomers syrups obtained using APOs with lower solid contents (55–80 wt%). It was found that as the solids content (i.e., monomers conversion) increased the adhesion, the tack and glass transition temperature decreased and the type and amount of photoinitiator had no effect on polydispersity. Most of the obtained PSAs were characterized by excellent cohesion, both at 20 °C and 70 °C.