scholarly journals Transcriptome-Based Analysis of Phosphite-Induced Resistance against Pathogens in Rice

Plants ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1334
Author(s):  
Yuqing Huang ◽  
Shengguan Cai ◽  
Guoping Zhang ◽  
Songlin Ruan

Phosphite (PHI) has been used in the management of Phytophthora diseases since the 1970s.We assessed the effect of PHI on controlling the incidence of Xanthomonas oryzae pv.oryzae and Pyricularia grisea. As a result, PHI application significantly inhibited the incidence of the diseases. To clarify the molecular mechanism underlying this, a transcriptome study was employed. In total, 2064 differentially expressed genes (DEGs) were identified between control and PHI treatment. The key DEGs could be classified into phenylpropanoid biosynthesis (ko00940), starch and sucrose metabolism (ko00500), and plant hormone signal transduction (ko04075). The expressions of defense-related genes had a higher expression lever upon PHI treatment. This study provides new insights into the mechanism of protection effect of PHI against pathogens.

Rice ◽  
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Guichun Wu ◽  
Yuqiang Zhang ◽  
Bo Wang ◽  
Kaihuai Li ◽  
Yuanlai Lou ◽  
...  

Abstract Background Xanthomonas oryzae pv. oryzae (Xoo) causes bacterial leaf blight, a devastating rice disease. The Xoo-rice interaction, wherein wide ranging host- and pathogen-derived proteins and genes wage molecular arms race, is a research hotspot. Hence, the identification of novel rice-induced Xoo virulence factors and characterization of their roles affecting rice global gene expression profiles will provide an integrated and better understanding of Xoo-rice interactions from the molecular perspective. Results Using comparative proteomics and an in vitro interaction system, we revealed that 5 protein spots from Xoo exhibited significantly different expression patterns (|fold change| > 1.5) at 3, 6, 12 h after susceptible rice leaf extract (RLX) treatment. MALDI-TOF MS analysis and pathogenicity tests showed that 4 host-induced proteins, including phosphohexose mutase, inositol monophosphatase, arginase and septum site-determining protein, affected Xoo virulence. Among them, mutants of two host-induced carbohydrate metabolism enzyme-encoding genes, ΔxanA and Δimp, elicited enhanced defense responses and nearly abolished Xoo virulence in rice. To decipher rice differentially expressed genes (DEGs) associated with xanA and imp, transcriptomic responses of ΔxanA-treated and Δimp-treated susceptible rice were compared to those in rice treated with PXO99A at 1 and 3 dpi. A total of 1521 and 227 DEGs were identified for PXO99A vs Δimp at 1 and 3 dpi, while for PXO99A vs ΔxanA, there were 131 and 106 DEGs, respectively. GO, KEGG and MapMan analyses revealed that the DEGs for PXO99A vs Δimp were mainly involved in photosynthesis, signal transduction, transcription, oxidation-reduction, hydrogen peroxide catabolism, ion transport, phenylpropanoid biosynthesis and metabolism of carbohydrates, lipids, amino acids, secondary metabolites, hormones, and nucleotides, while the DEGs from PXO99A vs ΔxanA were predominantly associated with photosynthesis, signal transduction, oxidation-reduction, phenylpropanoid biosynthesis, cytochrome P450 and metabolism of carbohydrates, lipids, amino acids, secondary metabolites and hormones. Although most pathways were associated with both the Δimp and ΔxanA treatments, the underlying genes were not the same. Conclusion Our study identified two novel host-induced virulence factors XanA and Imp in Xoo, and revealed their roles in global gene expression in susceptible rice. These results provide valuable insights into the molecular mechanisms of pathogen infection strategies and plant immunity.


BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Lihang Qiu ◽  
Rongfa Chen ◽  
Yegeng Fan ◽  
Xing Huang ◽  
Hanmin Luo ◽  
...  

Abstract Background Internode elongation is one of the most important traits in sugarcane because of its relation to crop productivity. Understanding the microRNA (miRNA) and mRNA expression profiles related to sugarcane internode elongation would help develop molecular improvement strategies but they are not yet well-investigated. To identify genes and miRNAs involved in internode elongation, the cDNA and small RNA libraries from the pre-elongation stage (EI), early elongation stage (EII) and rapid elongation stage (EIII) were sequenced and their expression were studied. Results Based on the sequencing results, 499,495,518 reads and 80,745 unigenes were identified from stem internodes of sugarcane. The comparisons of EI vs. EII, EI vs. EIII, and EII vs. EIII identified 493, 5035 and 3041 differentially expressed genes, respectively. Further analysis revealed that the differentially expressed genes were enriched in the GO terms oxidoreductase activity and tetrapyrrole binding. KEGG pathway annotation showed significant enrichment in “zeatin biosynthesis”, “nitrogen metabolism” and “plant hormone signal transduction”, which might be participating in internode elongation. miRNA identification showed 241 known miRNAs and 245 novel candidate miRNAs. By pairwise comparison, 11, 42 and 26 differentially expressed miRNAs were identified from EI and EII, EI and EIII, and EII and EIII comparisons, respectively. The target prediction revealed that the genes involved in “zeatin biosynthesis”, “nitrogen metabolism” and “plant hormone signal transduction” pathways are targets of the miRNAs. We found that the known miRNAs miR2592-y, miR1520-x, miR390-x, miR5658-x, miR6169-x and miR8154-x were likely regulators of genes with internode elongation in sugarcane. Conclusions The results of this study provided a global view of mRNA and miRNA regulation during sugarcane internode elongation. A genetic network of miRNA-mRNA was identified with miRNA-mediated gene expression as a mechanism in sugarcane internode elongation. Such evidence will be valuable for further investigations of the molecular regulatory mechanisms underpinning sugarcane growth and development.


Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2338
Author(s):  
Jiangjiang Zhang ◽  
Cuiping Zhang ◽  
Siqi Huang ◽  
Li Chang ◽  
Jianjun Li ◽  
...  

For the dissection and identification of the molecular response mechanisms to salt stress in cannabis, an experiment was conducted surveying the diversity of physiological characteristics. RNA-seq profiling was carried out to identify differential expression genes and pathway which respond to salt stress in different cannabis materials. The result of physiological diversity analyses showed that it is more sensitive to proline contents in K94 than in W20; 6 h was needed to reach the maximum in K94, compared to 12 h in W20. For profiling 0–72 h after treatment, a total of 10,149 differentially expressed genes were identified, and 249 genes exhibited significantly diverse expression levels in K94, which were clustered in plant hormone signal transduction and the MAPK signaling pathway. A total of 371 genes showed significant diversity expression variations in W20, which were clustered in the phenylpropanoid biosynthesis and plant hormone signal transduction pathway. The pathway enrichment by genes which were identified in K94 and W20 showed a similar trend to those clustered in plant hormone signal transduction pathways and MAPK signaling. Otherwise, there were 85 genes which identified overlaps between the two materials, indicating that these may be underlying genes related to salt stress in cannabis. The 86.67% agreement of the RNA-seq and qRT-PCR indicated the accuracy and reliability of the RNA-seq technique. Additionally, the result of physiological diversity was consistent with the predicted RNA-seq-based findings. This research may offer new insights into the molecular networks mediating cannabis to respond to salt stress.


Plants ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 65
Author(s):  
Huan Gao ◽  
Wanji Yang ◽  
Chunxia Li ◽  
Xingang Zhou ◽  
Danmei Gao ◽  
...  

Sub-optimal temperatures can adversely affect tomato (Solanum lycopersicum) growth, and K+ plays an important role in the cold tolerance of plants. However, gene expression and K+ uptake in tomato in response to sub-optimal temperatures are still not very clear. To address these questions, one cold-tolerant tomato cultivar, Dongnong 722 (T722), and one cold-sensitive cultivar, Dongnong 708 (S708), were exposed to sub-optimal (15/10 °C) and normal temperatures (25/18 °C), and the differences in growth, K+ uptake characteristics and global gene expressions were investigated. The results showed that compared to S708, T722 exhibited lower reduction in plant growth rate, the whole plant K+ amount and K+ net uptake rate, and T722 also had higher peroxidase activity and lower K+ efflux rate under sub-optimal temperature conditions. RNA-seq analysis showed that a total of 1476 and 2188 differentially expressed genes (DEGs) responding to sub-optimal temperature were identified in S708 and T722 roots, respectively. Functional classification revealed that most DEGs were involved in “plant hormone signal transduction”, “phenylpropanoid biosynthesis”, “sulfur metabolism” and “cytochrome P450”. The genes that were significantly up-regulated only in T722 were involved in the “phenylpropanoid biosynthesis” and “plant hormone signal transduction” pathways. Moreover, we also found that sub-optimal temperature inhibited the expression of gene coding for K+ transporter SIHAK5 in both cultivars, but decreased the expression of gene coding for K+ channel AKT1 only in S708. Overall, our results revealed the cold response genes in tomato roots, and provided a foundation for further investigation of mechanism involved in K+ uptake in tomato under sub-optimal temperatures.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Feiyan Ju ◽  
Shaodong Liu ◽  
Siping Zhang ◽  
Huijuan Ma ◽  
Jing Chen ◽  
...  

Abstract Background Appropriate plant architecture can improve the amount of cotton boll opening and allow increased planting density, thus increasing the level of cotton mechanical harvesting and cotton yields. The internodes of cotton fruiting branches are an important part of cotton plant architecture. Thus, studying the molecular mechanism of internode elongation in cotton fruiting branches is highly important. Results In this study, we selected internodes of cotton fruiting branches at three different stages from two cultivars whose internode lengths differed significantly. A total of 76,331 genes were detected by transcriptome sequencing. By KEGG pathway analysis, we found that DEGs were significantly enriched in the plant hormone signal transduction pathway. The transcriptional data and qRT-PCR results showed that members of the GH3 gene family, which are involved in auxin signal transduction, and CKX enzymes, which can reduce the level of CKs, were highly expressed in the cultivar XLZ77, which has relatively short internodes. Genes related to ethylene synthase (ACS), EIN2/3 and ERF in the ethylene signal transduction pathway and genes related to JAR1, COI1 and MYC2 in the JA signal transduction pathway were also highly expressed in XLZ77. Plant hormone determination results showed that the IAA and CK contents significantly decreased in cultivar XLZ77 compared with those in cultivar L28, while the ACC (the precursor of ethylene) and JA contents significantly increased. GO enrichment analysis revealed that the GO categories associated with promoting cell elongation, such as cell division, the cell cycle process and cell wall organization, were significantly enriched, and related genes were highly expressed in L28. However, genes related to the sphingolipid metabolic process and lignin biosynthetic process, whose expression can affect cell elongation, were highly expressed in XLZ77. In addition, 2067 TFs were differentially expressed. The WRKY, ERF and bHLH TF families were the top three largest families whose members were active in the two varieties, and the expression levels of most of the genes encoding these TFs were upregulated in XLZ77. Conclusions Auxin and CK are positive regulators of internode elongation in cotton branches. In contrast, ethylene and JA may act as negative regulators of internode elongation in cotton branches. Furthermore, the WRKY, ERF and bHLH TFs were identified as important inhibitors of internode elongation in cotton. In XLZ77(a short-internode variety), the mass synthesis of ethylene and amino acid conjugation of auxin led to the inhibition of plant cell elongation, while an increase in JA content and degradation of CKs led to a slow rate of cell division, which eventually resulted in a phenotype that presented relatively short internodes on the fruiting branches. The results of this study not only provide gene resources for the genetic improvement of cotton plant architecture but also lay a foundation for improved understanding of the molecular mechanism of the internode elongation of cotton branches.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Tingting Chen ◽  
Yanwei Zhou ◽  
Jingbo Zhang ◽  
Ye Peng ◽  
Xiuyan Yang ◽  
...  

Abstract Background Nitraria tangutorum is an important desert shrub that shows resistance to drought, salt and wind erosion stresses. It is a central ecological species in its area. Here, we have studied how N. tangutorum has adapted to achieve a successful reproduction strategy. Results We found that N. tangutorum is mainly pollinated by insects of the Hymenoptera, Diptera and Coleoptera orders. Nitraria tangutorum has very small flowers, with the nectary composed of secretive epidermal cells from which nectar is secreted, located within the inner petals. In addition, analyzing the transcriptome of four successive flower developmental stages revealed that mainly differentially expressed genes associated with flower and nectary development, nectar biosynthesis and secretion, flavonoid biosynthesis, plant hormone signal transduction and plant-pathogen interaction show dynamic expression. From the nectar, we could identify seven important proteins, of which the L-ascorbate oxidase protein was first found in plant nectar. Based on the physiological functions of these proteins, we predict that floral nectar proteins of N. tangutorum play an important role in defending against microbial infestation and scavenging active oxygen. Conclusions This study revealed that N. tangutorum is an insect-pollinated plant and its nectary is composed of secretive epidermal cells that specialized into secretive trichomes. We identified a large number of differentially expressed genes controlling flower and nectary development, nectar biosynthesis and secretion, flavonoid biosynthesis, plant hormone signal transduction and plant-pathogen interaction. We suggest that proteins present in N. tangutorum nectar may have both an antibacterial and oxygen scavenging effect. These results provide a scientific basis for exploring how the reproductive system of N. tangutorum and other arid-desert plants functions.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0248962
Author(s):  
Suifei Liu ◽  
Yongqi Fu ◽  
Yongming He ◽  
Xiaochun Zeng

Background Methyl Jasmonate (MeJA) could promote the opening of sorghum florets, but the molecular mechanism remains unclear. Objective We aimed to investigate the molecular mechanism of exogenous MeJA in promoting the opening of sorghum florets. Methods Hybrid sorghum Aikang-8 was selected as the test material in this study. Sorghum plants of uniform growth with approximately 20%-25% florets open were selected and treated with 0, 0.5 and 2.0 mmol/L of MeJA. Totally there were 27 samples with lodicules removed were obtained at different time points and used for the transcriptome analysis using the BGISEQ_500RS platform. Results The results showed the sorghum florets opened earlier than the control after the treatment with exogenous MeJA, and the promotive effect increased along with the increase of exogenous MeJA concentration. The number of differentially expressed genes (DEGs) in plasma cells increased with the increase of MeJA concentration, whether up- or down-regulated, after the exogenous MeJA treatment. Besides, the number of metabolic pathways was also positively correlated with the concentration of MeJA. GO and KEGG analysis suggested the DEGs were mainly enriched in starch and sucrose metabolism-related pathways (i.e., LOC8063704, LOC8083539 and LOC8056206), plant hormone signal transduction pathways (i.e., LOC8084842, LOC8072010, and LOC8057408), energy metabolic pathway (i.e., LOC8076139) and the α-linolenic acid metabolic pathway (i.e., LOC8055636, LOC8057399, LOC8063048 and LOC110430730). Functional analysis of target genes showed that two genes named LOC-1 (LOC8063704) and LOC-2 (LOC8076139) could induce the earlier flowering of Arabidopsis thaliana. Conclusion The results of this study suggest that exogenous MeJA treatments could induce the up- or down- regulation of genes related to starch and sucrose metabolism, -linolenic acid metabolism and plant hormone signal transduction pathways in the plasma cells of sorghum florets, thereby promoting the opening of sorghum florets.


2020 ◽  
Author(s):  
Changbao Li ◽  
Ming Xin ◽  
Li Li ◽  
Xuemei He ◽  
Guomin Liu ◽  
...  

AbstractPassion fruit (Passiflora edulia Sims), an important tropical and sub-tropical species, is classified as a respiration climacteric fruit, the quality deteriorates rapidly after harvest. To reveal the mechanisms involved in ripening and rapidly fruit senescence, the phytochemical characteristics and RNA sequencing were conducted in the purple passion fruits with different (1-MCP and PF) treatment. Comprehensive functional annotation and KEGG enrichment analysis showed that the starch and sucrose metabolism, plant hormone signal transduction, phenylpropanoid biosynthesis, flavonid biosynthesis, carotenoid biosynthesis were involved in fruit ripening. Applying with PF and 1-MCP significantly affected transcript levels of passion fruit after harvest storage. A large number of differently expressed unigenes (DEGs) were identified significantly enrichen in starch and sucrose metabolism, plant hormone signal transduction and phenylpropanoid biosynthesis at postharvest stage. The preservative film (PF) and 1-Methylcyclopropene (1-MCP) treatments increased superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) gene expression and enzyme activities, accelerated the lignin accumulation, decline β-galactosidase (β-Gal), polygalacturonase (PG) and cellulose activities and gene expression to delay cell wall degradation during fruit senescence. The RNA sequencing data of cell wall metabolism and hormone signal transduction pathway related unigenes were verified by RT-qPCR. The results indicated that the cell wall metabolism and hormone signal pathways were notably related to passion fruit ripening. PF and 1-MCP treatment might inhibited ethylene signaling and regulated cell wall metabolism pathways to inhibited cell wall degradation. Our results reveal ripening and senescence related networks during passion fruit ripening, which can provide a foundation for understanding the molecular mechanisms underlying PF and 1-MCP treatment on fruit ripening.


2021 ◽  
Author(s):  
Xingbo Bian ◽  
Yan Zhao ◽  
Shengyuan Xiao ◽  
He Yang ◽  
Yongzhong Han ◽  
...  

Abstract Background: Ginseng rusty root symptoms (GRS) is one of the primary diseases of ginseng. It leads to a severe decline in the quality of ginseng. Results: Compared with Healthy ginseng (HG), 949 metabolites and 9451 genes in diseased tissues were significantly changed at the metabolic and transcription levels. The metabolic patterns of the diseased tissues changed significantly, and organic acids, alkaloids, alcohols, and phenols may play a vital role in the response of ginseng to this disease. There were significant differences in the expression of plant hormone signal transduction, phenylpropanoid biosynthesis, peroxidase pathway, and multiple genes in the plant-pathogen interaction pathway.Conclusion: The current study performed a comparative metabolome and transcriptome analysis of GRS and HG. Based on the findings at the transcriptional and metabolic levels, the mechanism model of ginseng response to rusty root symptoms was established. Our results provide new insights into ginseng's response to rusty root symptoms, which will help reveal the potential molecular mechanisms of this disease in ginseng.


2021 ◽  
Vol 22 (6) ◽  
pp. 3002
Author(s):  
Manoj Kaushal ◽  
George Mahuku ◽  
Rony Swennen

Fusarium wilt caused by Fusarium oxysporum f. sp. cubense (Foc) is one of the most destructive diseases of banana. Methods to control the disease are still inadequate. The present investigation targeted expression of defense-related genes in tissue cultured banana plantlets of Fusarium resistant and susceptible cultivars after infection with biological control agents (BCAs) and Fusarium (Foc race 1). In total 3034 differentially expressed genes were identified which annotated to 58 transcriptional families (TF). TF families such as MYB, bHLH and NAC TFs were mostly up-regulated in response to pathogen stress, whereas AP2/EREBP were mostly down-regulated. Most genes were associated with plant–pathogen response, plant hormone signal transduction, starch and sucrose metabolism, cysteine and methionine metabolism, flavonoid biosynthesis, selenocompound metabolism, phenylpropanoid biosynthesis, mRNA surveillance pathway, mannose type O-glycan biosynthesis, amino acid and nucleotide sugar metabolism, cyanoamino acid metabolism, and hormone signal transduction. Our results showed that the defense mechanisms of resistant and susceptible banana cultivars treated with BCAs, were regulated by differentially expressed genes in various categories of defense pathways. Furthermore, the association with different resistant levels might serve as a strong foundation for the control of Fusarium wilt of banana.


Sign in / Sign up

Export Citation Format

Share Document