scholarly journals Analysis of Bubble Growth in Supercritical CO2 Extrusion Foaming Polyethylene Terephthalate Process Based on Dynamic Flow Simulation

Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2799
Author(s):  
Shun Yao ◽  
Yichong Chen ◽  
Yijie Ling ◽  
Dongdong Hu ◽  
Zhenhao Xi ◽  
...  

Bubble growth in the polymer extrusion foaming process occurs under a dynamic melt flow. For non-Newtonian fluids, this work successfully coupled the dynamic melt flow simulation with the bubble growth model to realize bubble growth predictions in an extrusion flow. The initial thermophysical properties and dynamic rheological property distribution at the cross section of the die exit were calculated based on the finite element method. It was found that dynamic rheological properties provided a necessary solution for predicting bubble growth during the supercritical CO2 polyethylene terephthalate (PET) extrusion foaming process. The introduction of initial melt stress could effectively inhibit the rapid growth of bubbles and reduce the stable size of bubbles. However, the initial melt stress was ignored in previous work involving bubble growth predictions because it was not available. The simulation results based on the above theoretical model were consistent with the evolution trends of cell morphology and agreed well with the actual experimental results.

2016 ◽  
Author(s):  
Hassan Karimi ◽  
Erni Dharma Putra ◽  
Kapil Kumar Thakur ◽  
Rahel Yusuf ◽  
Azwan Shaharun ◽  
...  

Polymers ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 985 ◽  
Author(s):  
Yidong Liu ◽  
Lingfeng Jian ◽  
Tianhua Xiao ◽  
Rongtao Liu ◽  
Shun Yi ◽  
...  

CO2 has been regarded as one of the most promising blowing agents for polystyrene (PS) foam due to its non-flammability, low price, nontoxicity, and eco-friendliness. However, the low solubility and fast diffusivity of CO2 in PS hinder its potential applications. In this study, an attapulgite (ATP)/polypyrrole (PPy) nanocomposite was developed using the in situ polymerization method to generate the hierarchical cell texture for the PS foam based on the supercritical CO2 foaming. The results demonstrated that the nanocomposite could act as an efficient CO2 capturer enabling the random release of it during the foaming process. In contrast to the pure PS foam, the ATP/PPy nanocomposite reinforced PS foam is endowed with high cell density (up to 1.9 × 106) and similar thermal conductivity as the neat PS foam, as well as high compression modulus. Therefore, the in situ polymerized ATP/PPy nanocomposite makes supercritical CO2 foaming desired candidate to replace the widely used fluorocarbons and chlorofluorocarbons as PS blowing agents.


2017 ◽  
Vol 135 (7) ◽  
pp. 45824 ◽  
Author(s):  
Jasna Ivanovic ◽  
Kurosch Rezwan ◽  
Stephen Kroll

2020 ◽  
Vol 557 (1) ◽  
pp. 43-57 ◽  
Author(s):  
Y. Tajitsu

We have developed a piezoelectric braided cord consisting of a conducting fiber yarn core, piezoelectric poly-l-lactic acid (PLLA) fiber yarn and a polyethylene terephthalate (PET) middle sheath, and a conducting fiber outer shield (piezoelectric PLLA braided cord). Actually, we made various types of piezoelectric PLLA braided cords using Japanese traditional braiding method called as Kumihimo-gumi in Japanese. Furthermore, by optimization based on the calculation results for each type of piezoelectric PLLA Kumihimo-gumi obtained by the finite element method (FEM), we were able to develop a new type of piezoelectric PLLA braided cord with a sensing function for complex motion (piezoelectric PLLA Kumihimo-gumi). Finally, we developed a new wearable sensor for a selfie stick which is a popular smartphone accessory, fabricated from a piezoelectric PLLA Kumihimo-gumi.


2009 ◽  
Vol 45 (6) ◽  
pp. 539-553 ◽  
Author(s):  
Kyung-Min Lee ◽  
Eung K. Lee ◽  
Seong G. Kim ◽  
Chul B. Park ◽  
H.E. Naguib

Sign in / Sign up

Export Citation Format

Share Document