Journal of Cellular Plastics
Latest Publications


TOTAL DOCUMENTS

2377
(FIVE YEARS 107)

H-INDEX

40
(FIVE YEARS 4)

Published By Sage Publications

0021-955x

2022 ◽  
pp. 0021955X2110626
Author(s):  
Adnan Srihanum ◽  
Maznee TI Tuan Noor ◽  
Kosheela PP Devi ◽  
Seng Soi Hoong ◽  
Nurul H Ain ◽  
...  

Palm olein-based polyol (PP) was used as a partial replacement for commercial sucrose/glycerine initiated polyether polyol (GP) for the production of low density rigid polyurethane foams (RPUFs). The hydroxyl value (OHV) of the GP was 380 mg KOH/g, whereas the OHV for PP was 360 mg KOH/g. The RPUFs were prepared by replacing the GP with PP up to 50 parts per hundred parts of polyols (pph). Characterisation of the RPUFs, including density, compressive strength and strain, cell morphology and thermal conductivity ( k-value), were conducted. The dimensional stability of the foams was also evaluated. The study showed improvement in the compressive strength and strain for palm-based RPUFs with the incorporation of up to 30 pph PP as compared to GP foams. The lowest k-value (0.0232 W/m.K) of RPUF with density below 30 kg/m3 was obtained with the incorporation of 10 pph PP. This was due to the smallest and uniform pore size distribution observed using SEM images. The dimensional stability of the RPUF prepared from PP was within the acceptable range. Thus, the RPUFs made from PP are potential candidates to be used as insulation for refrigerators, freezers and piping.


2021 ◽  
pp. 0021955X2110626
Author(s):  
Tae Seok Kim ◽  
Yeongbeom Lee ◽  
Chul Hyun Hwang ◽  
Kwang Ho Song ◽  
Woo Nyon Kim

The effect of perfluoroalkane (PFA) on the morphology, thermal conductivity, mechanical properties and thermal stability of rigid polyurethane (PU) foams was investigated under ambient and cryogenic conditions. The PU foams were blown with hydrofluorolefin. Morphological results showed that the minimum cell size (153 μm) was observed when the PFA content was 1.0 part per hundred polyols by weight (php). This was due to the lower surface tension of the mixed polyol solution when the PFA content was 1.0 php. The thermal conductivity of PU foams measured under ambient (0.0215 W/mK) and cryogenic (0.0179 W/mK at −100°C) conditions reached a minimum when the PFA content was 1.0 php. The low value of thermal conductivity was a result of the small cell size of the foams. The above results suggest that PFA acted as a nucleating agent to enhanced the thermal insulation properties of PU foams. The compressive and shear strengths of the PU foams did not appreciably change with PFA content at either −170°C or 20°C. However, it shows that the mechanical strengths at −170°C and 20°C for the PU foams meet the specification. Coefficient of thermal expansion, and thermal shock tests of the PU foams showed enough thermal stability for the LNG carrier’s operation temperature. Therefore, it is suggested that the PU foams blown by HFO with the PFA addition can be used as a thermal insulation material for a conventional LNG carrier.


2021 ◽  
pp. 0021955X2110626
Author(s):  
Ismail Omrani

In this paper, biobased and environmentally friendly rigid polyurethane foams (RPUF) from high hydroxyl value castor oil-based polyols have been prepared without the addition of petroleum-based polyols in the formulation. The new Biopolyol with high hydroxyl value was designed on the basis of the analysis of functionality, structure and hydroxyl value relation and synthesized directly from castor oil in a facile one-pot three-step system. A series of Biopolyols with hydroxyl values in the range of 550–650 mg KOH/g were obtained through transesterification, epoxidation, and hydrolysis. The Biopolyol chemical structure was characterized using FT-IR,1H NMR spectroscopies. The formulated blend polyol with amine catalysts and cyclopentane as a blowing agent have good cyclopentane solubility and phase separation between cyclopentane and polyol was not observed after 30 days. The foaming characteristics were evaluated and improved results were obtained. The thermal conductivity, thermal stability, compressive strength, morphology, dimensional stability, density, and foam flow of the RPUFs were characterized. The results are compared with RPUF prepared using standard commercial polyether polyols for pour-in-place RPUFs. The prepared biobased RPUFs from Biopolyol was able to reach the required satisfactory properties for the appliance industry.


2021 ◽  
pp. 0021955X2110618
Author(s):  
Anastasia L. Wickeler ◽  
Hani E. Naguib

This study demonstrates that the impact energy absorption capabilities of flexible sheets can be significantly enhanced by implementing tessellated designs into their structure. Configurations of three tessellated geometries were tested; they included a triangular-based, a rectangular-based, and a novel square-based pattern. Due to their geometrical complexity, multiple configurations of these tessellations were printed from a rubber-like material using an inkjet printer with two different thicknesses (2 and 4 mm), and their ability to absorb impact energy was compared to an unpatterned inkjet-printed sheet. In addition, the effect of multi-sheets stacking was also tested. Due to the tailored structure, the impact testing showed that the single-layer sheets were more effective at absorbing impact loads, and experience less deformation, than their two-layer counterparts. The 4 mm thick tessellated patterns were most effective at absorbing impact loads; all three thick patterns measured about 40% lower impact forces transferred to the base of the samples compared to the unpatterned counterparts.


2021 ◽  
pp. 0021955X2110281
Author(s):  
Anna Hössinger-Kalteis ◽  
Martin Reiter ◽  
Michael Jerabek ◽  
Zoltán Major

In this research study, a methodology is introduced for generating finite element simulation models for low density closed cell foams based on computed tomography (CT) measurement results. Creating this kind of simulation models can be very expensive with regard to modelling and computational effort. Hence, a combined modelling technique based on CT data and Voronoi diagrams is developed that minimizes this effort, but nevertheless, generates simulation models with a realistic microstructure. In this article, the generation of simulation models using this modelling method and the necessary adaptation of the models concerning microstructural features to consider, for example, anisotropic properties of the foam, are described. Furthermore, simulations are performed to investigate the mechanical performance of the foam models and to compare the results with several analytical models and experimental data. Finally, conclusions regarding the applicability and possible further extensions of the model are provided.


2021 ◽  
pp. 0021955X2110210
Author(s):  
Alejandro E Rodríguez-Sánchez ◽  
Héctor Plascencia-Mora

Traditional modeling of mechanical energy absorption due to compressive loadings in expanded polystyrene foams involves mathematical descriptions that are derived from stress/strain continuum mechanics models. Nevertheless, most of those models are either constrained using the strain as the only variable to work at large deformation regimes and usually neglect important parameters for energy absorption properties such as the material density or the rate of the applying load. This work presents a neural-network-based approach that produces models that are capable to map the compressive stress response and energy absorption parameters of an expanded polystyrene foam by considering its deformation, compressive loading rates, and different densities. The models are trained with ground-truth data obtained in compressive tests. Two methods to select neural network architectures are also presented, one of which is based on a Design of Experiments strategy. The results show that it is possible to obtain a single artificial neural networks model that can abstract stress and energy absorption solution spaces for the conditions studied in the material. Additionally, such a model is compared with a phenomenological model, and the results show than the neural network model outperforms it in terms of prediction capabilities, since errors around 2% of experimental data were obtained. In this sense, it is demonstrated that by following the presented approach is possible to obtain a model capable to reproduce compressive polystyrene foam stress/strain data, and consequently, to simulate its energy absorption parameters.


2021 ◽  
pp. 0021955X2110202
Author(s):  
Seul-Kee Kim ◽  
Jeong-Dae Kim ◽  
Dong-Ha Lee ◽  
Jeong-Hyeon Kim ◽  
Jae-Myung Lee

In this study, mechanical characteristics of pre-strained polyisocyanurate foam were investigated based on the uniaxial compression test. The compression test procedure was divided into two steps: pre-straining and the typical compression test for the recovered specimen. To evaluate the effect of pre-straining, four different compressive strains were considered, and the temperature and the strain rate dependencies on its mechanical characteristics were analyzed. Test results showed that the recovery ratio decreased substantially for 0.85 (ambient temperature) and 0.25 (cryogenic temperature), and polyisocyanurate foam pre-strained at cryogenic temperature revealed an earlier start of densification. Based on the deformation mechanism of the polymeric foam, the collapse of cells in the pre-strained polyisocyanurate foam was addressed to explain the distinguished features in compressive mechanical characteristics regarding test conditions.


Sign in / Sign up

Export Citation Format

Share Document