scholarly journals Colour Fastness to Various Agents and Dynamic Mechanical Characteristics of Biocomposite Filaments and 3D Printed Samples

Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3738
Author(s):  
Deja Muck ◽  
Helena Gabrijelčič Tomc ◽  
Urška Stanković Elesini ◽  
Maruša Ropret ◽  
Mirjam Leskovšek

The aim of the study was to analyse the colour fastness of 3D printed samples that could be used as decorative or household items. Such items are often fabricated with 3D printing. The colour of filaments affects not only the mechanical properties, but also the appearance and user satisfaction. Samples of biocomposite filaments (PLA and PLA with added wood and hemp fibres) were used. First, the morphological properties of the filaments and 3D printed samples were analysed and then, the colour fastness against different agents was tested (water, oil, detergent, light and elevated temperature). Finally, the dynamic mechanical properties of the filaments and 3D printed samples were determined. The differences in the morphology of the filaments and 3D printed samples were identified with SEM analysis. The most obvious differences were observed in the samples with wood fibres. All printed samples showed good resistance to water and detergents, but poorer resistance to oil. The sample printed with filaments with added wood fibres showed the lowest colour fastness against light and elevated temperatures. Compared to the filaments, the glass transition of the printed samples increased, while their stiffness decreased significantly. The lowest elasticity was observed in the samples with wood fibres. The filaments to which hemp fibres were added showed the reinforcement effect. Without the influence on their elasticity, the printed samples can be safely used between 60 and 65 °C.

Author(s):  
SS Rana ◽  
MK Gupta

The present study aims to fabricate the epoxy-based bionanocomposites reinforced with hemp nanocellulose and the evaluation of their mechanical, thermal and dynamic mechanical properties. Nanocellulose from hemp fibres was isolated via the chemo-mechanical method and its bionanocomposites were prepared using the in situ polymerization method. Although many researchers have reported studies on the preparation and characterization of bionanocomposites however, studies on the mechanical, thermal, and dynamic mechanical properties of epoxy-based bionanocomposites reinforced with hemp nanocellulose are still unreported. The mechanical properties (i.e. tensile, flexural, hardness, and impact) and dynamic mechanical properties (i.e. glass transition temperature, damping behaviour, storage, and loss modulus) of the developed bionanocomposites were investigated. Further, the crystalline behaviour and thermal stability were also studied using the X-ray diffraction and thermogravimetric analysis techniques, respectively. The results revealed that an addition of nanocellulose considerably improved the mechanical, thermal, and viscoelastic properties of the bionanocomposites. As much as 52.17%, 48.17%, 89.08%, and 15.67% improvements in the tensile strength, flexural strength, impact strength, and hardness, respectively, for the 2 wt.% nanocellulose composites were found over the epoxy matrix.


Materials ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 297 ◽  
Author(s):  
Mateusz Galeja ◽  
Aleksander Hejna ◽  
Paulina Kosmela ◽  
Arkadiusz Kulawik

Due to the rapid growth of 3D printing popularity, including fused deposition modeling (FDM), as one of the most common technologies, the proper understanding of the process and influence of its parameters on resulting products is crucial for its development. One of the most crucial parameters of FDM printing is the raster angle and mutual arrangement of the following filament layers. Presented research work aims to evaluate different raster angles (45°, 55°, 55’°, 60° and 90°) on the static, as well as rarely investigated, dynamic mechanical properties of 3D printed acrylonitrile butadiene styrene (ABS) materials. Configuration named 55’° was based on the optimal winding angle in filament-wound pipes, which provides them exceptional mechanical performance and durability. Also in the case of 3D printed samples, it resulted in the best impact strength, comparing to other raster angles, despite relatively weaker tensile performance. Interestingly, all 3D printed samples showed surprisingly high values of impact strength considering their calculated brittleness, which provides new insights into understanding the mechanical performance of 3D printed structures. Simultaneously, it proves that, despite extensive research works related to FDM technology, there is still a lot of investigation required for a proper understanding of this process.


2017 ◽  
Author(s):  
Mazlee Mohd Noor

The influence of superheat treatment on the microstructure and dynamic mechanical properties of A357 alloys has been investigated. The study of microstructure was performed by the optical microscope. Dynamic mechanical properties (storage modulus, loss modulus, and damping capacity) were measured by the dynamic mechanical analyzer (DMA). Microstructure showed coarser and angular eutectic Si particles with larger α-Al dendrites in the non-superheated A357 alloy. In contrast, finer and rounded eutectic Si particles together with smaller and preferred oriented α-Al dendrites have been observed in the superheated A357 alloy. Dynamic mechanical properties showed an increasing trend of loss modulus and damping capacity meanwhile a decreasing trend of storage modulus at elevated temperatures for superheated and non-superheated A357 alloys. The high damping capacity of superheated A357 has been ascribed to the grain boundary damping at elevated temperatures.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Ladawan Srisuwan ◽  
Kasama Jarukumjorn ◽  
Nitinat Suppakarn

In this study, the effect of silane treatment methods on cure characteristics and mechanical, dynamic mechanical, and morphological properties of rice husk flour (RHF)/natural rubber (NR) composites was investigated. The RHF surface was pretreated with alkali solution and then treated with bis(triethoxysilylpropyl) tetrasulfide (TESPT) solution using the unwashing silane treatment method and washing silane treatment method. The expected difference between these two methods was the silane layers presented on the RHF surface. Unwashed TESPT-treated RHF (UW-ST) and washed TESPT-treated RHF (W-ST) were incorporated into NR to prepare RHF/NR composites. The TESPT molecules deposited on UW-ST and W-ST surfaces were confirmed by the additional peaks appeared in the FTIR spectra of UW-ST and W-ST. In addition, the decrement of decomposition temperatures and the changes in the residue amounts of UW-ST and W-ST proved the removal of the physisorbed silane layers after washing. The presence of TESPT molecules on the RHF surface enhanced compatibility and adhesion between RHF and NR matrix. This was confirmed by SEM micrographs of both UW-ST/NR and W-ST/NR composites. This result was also supported by the improvement of the mechanical and the dynamic mechanical properties of these two composites. According to mechanical properties of the NR composites, the washing silane treatment method was more effective than the unwashing silane treatment method for compatibility improvement between RHF and NR. The modulus, tensile strength, and tear strength of W-ST/NR composites can be enhanced without deterioration of their elongation at break.


1997 ◽  
Vol 119 (1) ◽  
pp. 15-19 ◽  
Author(s):  
S. Yang ◽  
R. F. Gibson ◽  
G. M. Crosbie ◽  
R. L. Allor

This paper presents the preliminary results of our research on dynamic mechanical properties of silicon nitride based ceramics and ceramic composites at elevated temperatures. The temperature-dependent dynamic elastic modulus and internal damping of the cantilever beam samples were measured from room temperature up to 1100°C. The dynamic mechanical behavior is found to be rather stable up to 700°C, but damping peaks are found to occur at around 900°C, accompanied by a corresponding relaxation in elastic modulus for the tested samples. By simulating the thermal cycling environment of engines, the resulting changes in the dynamic mechanical properties of the samples are observed. The possible mechanisms affecting the dynamic mechanical properties of these ceramics and ceramic composites, with special emphasis on high-temperature behavior, are discussed.


2015 ◽  
Vol 37 (2) ◽  
pp. 162-167
Author(s):  
V.A. Vilensky ◽  
◽  
L.V. Kobrina ◽  
S.V. Riabov ◽  
Y.Y. Kercha ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document