scholarly journals Design, Synthesis and Evaluation of Novel Antimicrobial Polymers Based on the Inclusion of Polyethylene Glycol/TiO2 Nanocomposites in Cyclodextrin as Drug Carriers for Sulfaguanidine

Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 227
Author(s):  
Hemat M. Dardeer ◽  
Arafat Toghan ◽  
Magdi E. A. Zaki ◽  
Rokaia B. Elamary

Polymers and their composites have recently attracted attention in both pharmaceutical and biomedical applications. Polyethylene glycol (PEG) is a versatile polymer extensively used in medicine. Herein, three novel PEG-based polymers that are pseudopolyrotaxane (PEG/α-CD) (1), titania–nanocomposite (PEG/TiO2NPs) (2), and pseudopolyrotaxane–titania–nanocomposite (PEG/α-CD/TiO2NPs) (3), were synthesized and characterized. The chemical structure, surface morphology, and optical properties of the newly materials were examined by FT-IR, 1H-NMR, SEM, and UV–Vis., respectively. The prepared polymers were used as drug carriers of sulfaguanidine as PEG/α-CD/Drug (4), PEG/TiO2NPs/Drug (5), and PEG/α-CD/TiO2NPs/Drug (6). The influence of these drug-carrying formulations on the physical and chemical characteristics of sulfaguanidine including pharmacokinetic response, solubility, and tissue penetration was explored. Evaluation of the antibacterial and antibiofilm effect of sulfaguanidine was tested before and after loading onto the prepared polymers against some Gram-negative and positive bacteria (E. coli, Pseudomonas aeruginosa, and Staphylococcus aureus (MRSA)), as well. The results of this work turned out to be very promising as they confirmed that loading sulfaguanidine to the newly designed polymers not only showed superior antibacterial and antibiofilm efficacy compared to the pure drug, but also modified the properties of the sulfaguanidine drug itself.

2020 ◽  
Vol 32 (3) ◽  
pp. 580-586
Author(s):  
Ranjit V. Gadhave ◽  
Bhanudas S. Kuchekar

A new series of N-(benzo[d]thiazol-2-yl)-[1,2,4]triazolo[4,3-c]quinazoline-5-carboxamide derivatives were synthesized by condensation of [1,2,4]triazolo[4,3-c]quinazoline-5-carboxylate derivatives with substituted benzothiazoles. The chemical structures of the synthesized compounds were confirmed by FT-IR, MS and 1H NMR spectra. Designed triazoloquinazoline derivatives were docked with oxido-reductase enzyme (PDB Code 4h1j) and DNA gyrase enzyme (PDB Code 3g75). Based on high binding affinity score, the best compound were selected for synthesis and subjected to in vitro antioxidant and antibacterial activity. Compounds 7a and 7d were found to be most active compounds as antioxidant agent among this series when compared with ascorbic acid. Compounds 7a, 7d and 7f were found to be most active compounds as an antibacterial agents among this series when compared with ciprofloxacin against bacterial strains such as S. aureus (ATCC 25923), E. coli (ATCC 25922) and P. aeruginosa (ATCC 27853). Study revealed that the most active compounds after structural modifications can be exploited as lead molecules for other pharmacological activities such as anti-inflammatory, anticancer and antidepressant activities.


Antibiotics ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 213 ◽  
Author(s):  
V.A. Karetsi ◽  
C.N. Banti ◽  
N. Kourkoumelis ◽  
C. Papachristodoulou ◽  
C.D. Stalikas ◽  
...  

The [Zn3(CitH)2] (1) (CitH4= citric acid), was dispersed in sodium lauryl sulphate (SLS) to form the micelle of SLS@[Zn3(CitH)2] (2). This material 2 was incorporated in hydrogel made by hydroxyethyl-methacrylate (HEMA), an ingredient of contact lenses, toward the formation of pHEMA@(SLS@[Zn3(CitH)2]) (3). Samples of 1 and 2 were characterized by UV-Vis, 1H-NMR, FT-IR, FT-Raman, single crystal X-ray crystallography, X-ray fluorescence analysis, atomic absorption and TG/DTA/DSC. The antibacterial activity of 1–3 as well as of SLS against Gram-positive (Staphylococcus epidermidis (St. epidermidis) and Staphylococcus aureus (St. aureus)) and Gram-negative (Pseudomonas aeruginosa (PAO1), and Escherichia coli (E. coli)) bacteria was evaluated by the means of minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and inhibitory zone (IZ). 2 showed 10 to 20-fold higher activity than 1 against the bacteria tested. Moreover the 3 decreases the abundance of Gram-positive microbes up to 30% (St. aureus) and up to 20% (PAO1) the Gram-negative ones. The noteworthy antimicrobial activity of the obtained composite 3 suggests an effective antimicrobial additive for infection-free contact lenses.


2017 ◽  
Vol 41 (11) ◽  
pp. 645-649 ◽  
Author(s):  
Long-Fei Mao ◽  
Gui-Qing Xu ◽  
Bin Sun ◽  
Yu-Qin Jiang ◽  
Wen-Pei Dong ◽  
...  

A series of novel 1,2,3-triazole derivatives incorporating 3′-deoxythymidine were designed, synthesised and characterised. Antibacterial activity against Escherichia coli and Staphylococcus aureus was evaluated for all of the synthesised compounds and compared against standard antibiotic drugs, streptomycin sulfate and doxycycline, as controls. Some compounds showed potential antibacterial activity towards E. coli, and the best minimum inhibitory concentration was 0.14 mM. Preliminary structure-activity relationships and computational simulations were also studied.


Processes ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 667
Author(s):  
Shazia Shukrullah ◽  
Warda Bashir ◽  
Noor Ul Huda Altaf ◽  
Yasin Khan ◽  
Abdulrehman Ali Al-Arainy ◽  
...  

Freshwater is only 2.5% of the total water on the Earth and rest is contaminated or brackish. Various physical and chemical techniques are being used to purify the contaminated water. This study deals with catalytic plasma treatment of contaminated water collected from different sites of Faisalabad-Pakistan. A non-thermal DC plasma jet technique was used to treat the water samples in the presence of TiO2 catalyst. The plasma-assisted catalytic treatment introduced some oxidative species (O3, H2O2, HO2−, OH−) in the water. These species reacted with pollutants and cause the degradation of harmful contaminants, especially dyes. The degradation of dye sample during plasma treatment was more pronounced as compared to other samples. pH, conductivity and TDS of dye containing sample decreased after catalytic plasma treatment. The degradation of organic pollutants increased due to presence of several oxidants, such as TiO2, ferrous ions and hydrogen peroxide. FT-IR analysis revealed the degradation of some functional groups during treatment process and confirmed the effectiveness of the process. The residue of the treated samples was consisted of amines, amides and N-H functional groups. XRD analysis showed the presence of Alite, Ferrite, aluminate, Si, S and some heavy metals in the residue. The effect of plasma treatment on activity of gram-negative Escherichia coli (E. coli) bacteria in water was also checked. The bacterial activity was reduced by almost 50% after 2 min of plasma treatment.


2015 ◽  
Vol 731 ◽  
pp. 457-461 ◽  
Author(s):  
Xin Pang ◽  
Yun Zhi Chen ◽  
Zheng Jian Zhang

As a kind of environmentally friendly material, microfibrillated cellulose (MFC) has the following advantages: renewable raw materials, easy recycling, biodegradable, safety and so on. It can be combined with antibacterial agents to prepare the antibacterial packing materials for food. In this paper, the nano-ZnO was modified by titanate coupling agent TM-38s at first,determines the best dosage of TM-38 is 3% in the modification process,the dosage of the isopropyl alcohol for 40ml,improving its dispersibility. And then added in the MFC suspension to formulate the antibacterial coating for antibacterial coated paper preparation. The changes of antibacterial properties of the paper before and after coating were investigated in this study. The results showed that the paper had a significant antibacterial activity to e. coli and staphylococcus aureus (the antibacterial circle was bigger than 15 mm).When the nano-ZnO dosage was 2.5wt%, the antibacterial properties of the coated paper could reach the best situation. Application of the antibacterial caoated paper to the food packaging could restrain and kill the microorganisms on the food surface effectively, prolong the shelf life of food, and improve the food safety.


Antioxidants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 978
Author(s):  
Jelena Šuran ◽  
Ivica Cepanec ◽  
Tomislav Mašek ◽  
Kristina Starčević ◽  
Ivana Tlak Gajger ◽  
...  

We compared the chemical composition, antioxidant and antimicrobial activity of two propolis extracts: one obtained with nonaqueous polyethylene glycol, PEG 400 (PgEP), and the other obtained with ethanol (EEP). We analyzed the total phenolic content (TPC) and the concentrations of ten markers of propolis antioxidant activity with HPLC-UV: caffeic acid, p-coumaric acid, trans-ferulic acid, trans-cinnamic acid, kaempferol, apigenin, pinocembrin, chrysin, CAPE, and galangin. Antioxidant activity was tested using DPPH and FRAP assay, and antimicrobial activity was assessed through minimum inhibitory concentrations (MICs) and minimum biofilm eradication concentration (MBEC) determination. Maceration gave the yield of propolis of 25.2 ± 0.08% in EEP, and 21.5 ± 0.24% in PgEP. All ten markers of antioxidant activity were found in both extracts, with all marker concentrations, except kaempferol, higher in EEP. There was no significant difference between the TPC and antioxidant activity of the PgEP and the EEP extract; TPC of PgEP was 16.78 ± 0.23 mg/mL, while EEP had TPC of 15.92 ± 0.78 mg/mL. Both extracts had antimicrobial activity against most investigated pathogens and Staphylococcus aureus, Acinetobacter baumannii, and Escherichia coli biofilms. EEP was more effective against all tested susceptible pathogens, except E. coli, possibly due to higher content of kaempferol in PgEP relative to other polyphenols. Nonaqueous PEG 400 could be used for propolis extraction. It gives extracts with comparable concentrations of antioxidants and has a good antioxidant and antimicrobial activity. It is a safe excipient, convenient for pediatric and veterinary formulations.


2014 ◽  
Vol 1 (1) ◽  
pp. 24-34
Author(s):  
Alireza K. ◽  
Hossein Ahmadi ◽  
Mohsen Mohammadi

Lubricants and leather dressings are the most common treatments of dry and water logged historical leathers. Color change has a great importance during the time and treatment process, due to visual and aesthetic values of historic leather relics. Polyethylene glycol (PEG) and silicone oil (SiO) are frequently used leather dressings in the conservation procedures. Therefore, color stability of treated leathers with PEG and SiO were investigated before and after heat accelerated aging. Moreover, application of ascorbic acid was evaluated as an antioxidant additive for PEG (PEG+AA).Color change after treatment and aging were studied by colorimetry technique in the CIE *L*a*b system. Results indicated to severe color alteration in PEG treated and aged leathers with or without ascorbic acid. Whereas, SiO treated samples showed better stability and minimum color shift after aging. Silicone oil was characterized as the best dressing for historical leathers with compared to PEG and PEG+AA, due to its high stability and aesthetical properties.


Author(s):  
М. S. Saypullaev ◽  
А. U. Koychuev ◽  
Т. B. Mirzoeva

The successful conduct of disinfection measures largely depends on the availability of veterinary practice a highly efficient, environmentally safe disinfectants. In this regard, finding new highly efficient disinfectant remains relevant. Studies found that the "Polied" (OOO "Razvitie XXI Vek, Russia) can be attributed to the highly efficient and environmentally friendly means. Solutions "Polied" have a high disinfectant activity against smooth and rough surfaces in the laboratory against gram-positive, gram-negative bacteria, mycobacteria and spores of microorganisms. Studies have established that solutions should be "Polied" obezzarajivatmi E. coli (EA 1257) concentrations of 0.1% on smooth surfaces and Staphylococcus aureus concentration of 0.05% in 1 hour from the calculation of 0.25-0.3 litres/m2. Disinfection of rough test surfaces against Escherichia coli and Staphylococcus aureus occurred after treatment with 0,3% solution of 3-hour exposure, at a rate of 0.5 l/m2. It was also found that 1.0% solution "Polied" fully obezzarazhivatel test the surface of mycobacteria (PCs-5) and at double the 0.6% concentration for 24 hours. Disinfection of rough test surfaces contaminated with spores of B. cereus (PCs 96) was achieved with a 4.0% solution at twice the irrigation rate of 0.5 l/m2 at an exposure of 24 hours. Toxicity solutions of the drug "Polied" refer to "moderate" threat (hazard class 3) and low-hazard substances (4 hazard class) when applied to the skin, mucous membranes of the eyes, and inhalation exposure on the respiratory system.


2020 ◽  
Vol 10 (3) ◽  
pp. 316-329
Author(s):  
Fateme Mirzajani ◽  
Amin Hamidi

Introduction: In this project, the growth and volatile metabolites profiles of Escherichia coli (E. coli ) and Staphylococcus aureus were monitored under the influence of silver base chemical, nanoparticle and ultra-highly diluted compounds. Materials & Methods: The treatments were done for 12000 life cycles using silver nanoparticles (AgNPs) as well as ultra-highly diluted Argentum nitricum (Arg-n). Volatile organic metabolites analysis was performed using gas chromatography mass spectrometry (GC-MS). The results indicated that AgNPs treatment made the bacteria resistant and adapted to growth in the nanoparticle condition. The use of ultra-highly diluted Arg-n initially increased growth but it decreased later. Also, with the continuous usage of these materials, no more bacterial growth was observed. Results: The most important compounds produced by E. coli are Acetophenone, Octyl acetate, Styrene, 1,8-cineole, 4-t-butyl-2-(1-methyl-2-nitroethyl)cyclohexane, hexadecane and 2-Undecanol. The main compounds derived from S. aureus are Acetophenone,1,8-cineole, Benzaldehyde, 2-Hexan-1-ol, Tridecanol, Dimethyl Octenal and tetradecane. Acetophenone and 1,8-cineole were common and produced by both organisms. Conclusion: Based on the origin of the produced volatiles, main volatiles percentage of untreated sample is hydrocarbon (>50%), while bacteria treatments convert the ratio in to aldehydes, ketones and alcohols in the case of AgNPs, (>80%) and aldehydes, ketones and terpenes in the case of Arg-n (>70%).


Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 4731
Author(s):  
Changkun Liu ◽  
Dan Liao ◽  
Fuqing Ma ◽  
Zenan Huang ◽  
Ji’an Liu ◽  
...  

In this study, the surface-initiated atom transfer radical polymerization (SI-ATRP) technique and electroless deposition of silver (Ag) were used to prepare a novel multi-functional cotton (Cotton-Ag), possessing both conductive and antibacterial behaviors. It was found that the optimal electroless deposition time was 20 min for a weight gain of 40.4%. The physical and chemical properties of Cotton-Ag were investigated. It was found that Cotton-Ag was conductive and showed much lower electrical resistance, compared to the pristine cotton. The antibacterial properties of Cotton-Ag were also explored, and high antibacterial activity against both Escherichia coli and Staphylococcus aureus was observed.


Sign in / Sign up

Export Citation Format

Share Document