scholarly journals Effect of Stretching on Thermal Behaviour of Electro-Conductive Weft-Knitted Composite Fabrics

Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 249
Author(s):  
Md. Reazuddin Repon ◽  
Ginta Laureckiene ◽  
Daiva Mikucioniene

This experiment presents a study carried out on the electric charge passing textiles for heat production in compression weft-knitted composite fabrics used for medical purposes. The aim was to flourish compression support of knitted structure with integrated highly sensitive metal (silver) coated polyamide multifilament yarns and to evaluate its heat origination attributes after stretching in different levels as well as changes of the temperature during the time. A flat double needle-bed knitting machine was utilized to fabricate the selected specimens together with elastomeric inlay-yarn incorporated into the structure for compression generation and silver coated polyamide yarn laid as ground yarn in a plated structure for heat generation. Six different variants depending on the metal coated yarn amount used and the fabric structure along with two types of the conductive yarn linear density were fabricated for this research work. Scanning electron microscope (SEM) images were preoccupied to show the morphology of conductive yarn and thermal pictures were captured to study the evenness of the heat over the surface of composite fabrics depending on conductive yarn distribution in the pattern repeat. The temperature profile of fabricated composite fabrics and comparison of the heat generation by specimens after stretching in different levels was studied.

Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6780
Author(s):  
Md. Reazuddin Repon ◽  
Ginta Laureckiene ◽  
Daiva Mikucioniene

Textile-based heaters have opened new opportunities for next-generation smart heating devices. This experiment presents electrically conductive textiles for heat generation in orthopaedic compression supports. The main goal was to investigate the influence of frequent washing and stretching on heat generation durability of constructed compression knitted structures. The silver coated polyamide yarns were used to knit a half-Milano rib structure containing elastomeric inlay-yarn. Dimensional stability of the knitted fabric and morphological changes of the silver coated electro-conductive yarns were investigated during every wash cycle. The results revealed that temperature becomes stable within two minutes for all investigated fabrics. The heat generation was found to be dependent on the stretching, mostly due to the changing surface area; and it should be considered during the development of heated compression knits. Washing negatively influences the heat-generating capacity on the fabric due to the surface damage caused by the mechanical and chemical interaction during washing. The higher number of silver-coated filaments in the electro-conductive yarn and the knitted structure, protecting the electro-conductive yarn from mechanical abrasion, may ensure higher durability of heating characteristics.


1999 ◽  
Vol 68 (3) ◽  
pp. 519-526 ◽  
Author(s):  
E. Kanitz ◽  
W. Otten ◽  
G. Nürnberg ◽  
K. P. Brüssow

AbstractThe study was conducted to investigate the adreno cortical capacity after injection of ACTH and the sensitivity of the pituitary and the adrenal to immobilization in neonatal pigs at different ages. Furthermore, the endocrine reactivity of the offspring was compared with the stress reactivity of their mothers. Four piglets were selected from each of six different litters and subjected to an immobilization test and an adrenal function test using synthetic ACTH1-24 at the ages of 7, 21 and 35 days; the six sows were also subjected to restraint and an ACTH stimulation test. Plasma β-endorphin, norepinephrine and epinephrine concentrations were measured in blood samples taken 2 min after restraint and cortisol concentrations were measured 60 min after ACTH administration. A highly sensitive adrenal response was demonstrated in both sows and piglets and adrenal reactivity showed also a considerable consistency over time within sows. In neonatal pigs, the cortisol response to ACTH was greatest on day 7 and decreased up to day 35. Plasma epinephrine and norepinephrine levels after the 2-min immobilization were also higher at day 7 compared with the other ages (P < 0·01). Piglets from sows, classified as high reacting according to their cortisol or epinephrine response, also showed significantly higher cortisol levels after ACTH challenge at all ages and significantly higher epinephrine levels after restraint at day 7 than piglets from low reacting sows. The results show an age-related change of pituitary-adrenocortical and sympatho-adrenomedullary responses in neonatal pigs and an absence of a stress hyporesponsive period at all ages studied. The results also indicate different levels of excitability in the offspring depending on the maternal stress reactivity.


2012 ◽  
Vol 9 (1) ◽  
pp. 67-71 ◽  
Author(s):  
MA Momin ◽  
MA Islam ◽  
MM Khatun ◽  
MM Rahman ◽  
MA Islam

The present research work was undertaken for the characterization of the bacterial pathogens responsible for pneumonia in black Bengal goats. Nasal swab samples (n = 50) were collected from the pneumonic black Bengal goats in Mymensingh and Sirajgonj districts. Samples were inoculated onto nutrient agar, eosin methylene blue (EMB) agar, MacConkey agar, and blood agar media for isolation of bacteria. Identification of bacteria was performed by the Gram's staining method, cultural properties and biochemical tests. Antibiotic sensitivity of bacterial isolates was performed against 11 antimicrobial agents. Pasteurella spp were isolated from 25 cases, and Staphylococcus spp from 13 cases. Mixed infection caused by the Pasteurella spp and Staphylococcus spp. were recorded in 12 cases. Pasteurella spp produced whitish, opaque circular and translucent colonies on nutrient agar, smooth, convex, glistening colonies on EMB agar and no hemolysis on blood agar. Staphylococcus spp have shown gray white or golden yellowish colonies on  nutrient agar. Golden yellow colonies without hemolysis or whitish colonies with hemolysis were also produced by Staphylococcus spp. on the blood agar media. Pasteurella spp were indole positive, MR-VP negative and ferment dextrose, sucrose and mannitol with the production of acid. The Staphylococcus spp were positive to MR-VP, coagulase and catalase reactions, negative to indole test and fermented five basic sugars with acid production. Results of cultural and biochemical tests supported that these two isolates belonged to P. multocida and S. aureus. P. multocida were highly sensitive to ciprofloxacin and resistant to penicillin. S. aureus found to be highly sensitive to erythromycin, tetracycline, enrofloxacin, and norfloxacin and less sensitive to amoxicillin. DOI = http://dx.doi.org/10.3329/bjvm.v9i1.11215Bangl. J. Vet. Med. (2011). 9(1): 67-71 


2019 ◽  
Vol 26 (04) ◽  
pp. 1850173 ◽  
Author(s):  
S. JEYAPRAKASAM ◽  
R. VENKATACHALAM ◽  
C. VELMURUGAN

This research work focuses about fabrication and investigation on the influence of Titanium Carbide (TiC)-graphite particles reinforcement in wear behavior of Aluminium Matrix Composites (AMC). The stir casting technique was used to fabricate AMC reinforced with various weight percentage of TiC and graphite particles. Wear tests were conducted by using pin-on-disc wear testing machine. The hardness of the hybrid composites were recorded on the test specimen. The worn out surfaces of composites were analyzed using Scanning Electron Microscope (SEM). Results reveal that the presence of TiC and graphite particles improved the wear resistance. The wear of composite is primarily due to delamination and abrasion. The graphite particles serve as the solid lubricant on the wear of composite. The hardness of composite is improved with the decrease in weight percentage of graphite. SEM images reveal that the reinforcement particles in the matrix are homogeneously distributed. Also, worn-out surfaces of the composite were studied to observe wear track and wear mechanisms like plowing grooves, crack or cutting, and fragmentation.


Polymers ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1382 ◽  
Author(s):  
Gislaine Ferreira Nogueira ◽  
Farayde Matta Fakhouri ◽  
José Ignacio Velasco ◽  
Rafael Augustus de Oliveira

This research work evaluated the influence of the type of incorporation and variation in the concentration of blackberry pulp (BL) and microencapsulated blackberry pulp (ML) powders by freeze-drying on the chemical and physical properties of arrowroot starch films. Blackberry powders were added to the film-forming suspension in different concentrations, 0%, 20%, 30% and 40% (mass/mass of dry starch) and through two different techniques, directly (D) and by sprinkling (S). Scanning electron microscopy (SEM) images revealed that the incorporation of blackberry powder has rendered the surface of the film rough and irregular. Films incorporated with BL and ML powders showed an increase in thickness and water solubility and a decrease in tensile strength in comparison with the film containing 0% powder. The incorporation of blackberry BL and ML powders into films transferred colour, anthocyanins and antioxidant capacity to the resulting films. Films added with blackberry powder by sprinkling were more soluble in water and presented higher antioxidant capacity than films incorporated directly, suggesting great potential as a vehicle for releasing bioactive compounds into food.


2020 ◽  
Vol 54 (28) ◽  
pp. 4387-4395
Author(s):  
Sanchi Arora ◽  
Abhijit Majumdar ◽  
Bhupendra Singh Butola

The beneficial effect of STF impregnation in enhancing the impact resistance of high-performance fabrics has been extensively reported in the literature. However, this research work reports that fabric structure has a decisive role in moderating the effectiveness of STF impregnation in terms of impact energy absorption. Plain woven fabrics having sett varying from 25 × 25 inch−1 to 55 × 55 inch−1 were impregnated with STF at two different padding pressures to obtain different add-ons. The impact energy absorption by STF impregnated loosely woven fabrics was found to be higher than that of their neat counterparts for both levels of add-on, while opposite trend was observed in case of tightly woven fabrics. Further, comparison of tightly woven plain, 2/2 twill, 3/1 twill and 2 × 2 matt fabrics revealed beneficial effect of STF impregnation, except for the plain woven fabric, establishing that there exists a fabric structure-STF impregnation interplay that tunes the impact resistance of woven fabrics.


2013 ◽  
Vol 772 ◽  
pp. 474-479 ◽  
Author(s):  
Codrin Donciu

A research regarding integral knitted structures for electrostatic discharge (ESD) protective garments with core conductive fibres is currently undergoing. In this paper, the second part of the research is presented, in which the integral knitted structures with carbon-based fibres were investigated. A number of 8 samples were manufactured and their ESD properties were analyzed. In this regard, the surface resistivity, volume resistivity, and charge decay time were determined, and based on the results, a bilayer knitted structure was proposed.


Molecules ◽  
2019 ◽  
Vol 24 (18) ◽  
pp. 3245 ◽  
Author(s):  
Iwona Kosendiak ◽  
Jussi M.E. Ahokas ◽  
Justyna Krupa ◽  
Jan Lundell ◽  
Maria Wierzejewska

Structural changes of glycolic acid (GA) complex with nitrogen induced by selective overtone excitation of the νOH mode were followed in argon matrices using FTIR spectroscopy. For the most stable SSC1 complex present in different trapping sites directly upon deposition site, selective changes in the νOH region were achieved upon near-infrared irradiation. Simultaneously, new conformers of the GA…N2 complex were formed, giving rise to several sets of bands in the νOH and νC=O regions of the spectra. Both position and intensity of new absorptions appeared to be highly sensitive on the wavelength of radiation used, as well as on the annealing of the matrix. Based on theoretical calculations at different levels of theory, an assignment of the observed bands is proposed and discussed.


2013 ◽  
Vol 750-752 ◽  
pp. 228-231 ◽  
Author(s):  
Yan Qin Xu ◽  
Sheng Wu Du ◽  
Jun Gao ◽  
Yuan Cao ◽  
Chang Guo Chen ◽  
...  

The synthesis used urea and Zr (NO3)4·5H2O as material to prepare tetragonal-ZrO2 nanocrystals through microwave-induced combustion process. The tetragonal-ZrO2 nanocrystals were characterized by X-ray diffraction (XRD). The effect of Zr4+/urea molar ratio on the synthesis of tetragonal-ZrO2 were studied. It was found that tetragonal-ZrO2 crystal would be better when the Zr4+/urea molar ratio was larger than 1:3.The SEM images of the samples showed the hollow structures formed at different levels of molar ratio of Zr4+/urea. This method is a simple but effective route to prepare tetragonal-ZrO2 nanocrystals.


2019 ◽  
Vol 01 (02) ◽  
pp. 77-86
Author(s):  
Dinesh Kumar ◽  
Kalaipriyan T ◽  
Raghav R.S.

The Body Sensor Networks is captivated in gathering the communication module in a more reliable manner along with efficiency in terms of energy, more secure than earlier schema’s, ands enhanced utilization of resources. Wireless BAN (WBAN) has the tendency to be placed even inside the human body. The significance of BSN has the tendency to go through all aspects such as fitness of a person, his/her health issues, caring in critical level, and so on. In 2014 [1] the elevation of body sensors has been grown upto 420 millions from 11 million units in 2009. In this research work, we addressed BAN from On-Body to Body-to-Body cooperative networks at different levels: propagation, protocols and localization applications.


Sign in / Sign up

Export Citation Format

Share Document